Page 306 - Elements of Distribution Theory
P. 306

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                            292                       Approximation of Integrals

                            for any constant c,
                                    1                        1

                                    2     u + j + 1/2        2       u + j + 1/2
                                     uf  
            du =     u f
                                    1         m              1           m
                                   −                        −
                                    2                        2

                                                                 j + 1/2
                                                           − f  
         du,  j = 0,..., m − 1.
                                                                   m
                            Using the Lipschitz condition on f

                                    1                           1


                                    2     u + j + 1/2       K   2          K
                                     uf               du  ≤       |u| du =   ,  j = 0,..., m − 1
                                        
                           2

                                    1         m             m   1         12m

                                   −                           −
                                    2                           2
                            so that
                                                    m
                                                                             K

                                                    (x −	x − 1/2) f (x/m) dx ≤

                                                                             12
                                                  0
                            and, hence, that
                                        1       m                            1

                                                (x −	x − 1/2) f (x/m) dx = O     as m →∞.
                                    m(m + 1)  0                             m 2
                              It follows that

                                          X        m
                                    E f        =       E[ f (U)]
                                          m      m + 1
                                                      1                      1
                                                 +         [ f (0) + f (1)] + O  as m →∞.
                                                   2(m + 1)                 m 2
                              In order for the result in Theorem 9.17 to be useful, we need some information regarding
                            the magnitude of the integral (9.9), as in the previous example. A particularly simple bound
                            is available for the case in which f is a monotone function.
                            Corollary 9.3. Let f denote a continuously differentiable monotone function on [m,r]
                            where m and r are integers, m ≤ r. Then

                                        r          r
                                                            1                1
                                          f ( j) −  f (x) dx − [ f (m) + f (r)]  ≤  | f (r) − f (m)|  (9.10)


                                                 m          2                2
                                       j=m
                            and

                                              r          r


                                                f ( j) −  f (x) dx  ≤ max{| f (m)|, | f (r)|}.  (9.11)

                                             j=m
                                                       m
                              Suppose that f is a decreasing function and
                                                          lim f (r) = 0.
                                                          r→∞
                            Then

                                              ∞          ∞
                                                                   1        1

                                                f ( j) −  f (x) dx −  f (m)  ≤  | f (m)|.      (9.12)

                                                       m           2        2
                                             j=m
   301   302   303   304   305   306   307   308   309   310   311