Page 301 - Elements of Distribution Theory
P. 301

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                             9.6 Uniform Asymptotic Approximations           287

                          It follows that
                              ∞                                  ∞

                                1                                     x         z  2
                                  exp{−z(y − log(y))} dy = exp(−z)        exp − x    dx
                                y                               x(c) y(x) − 1   2
                             c
                                                        √
                                                          (2π)         ∞    x   √    √
                                                     =   √    exp(−z)             zφ( zx) dx
                                                           z          x(c) y(x) − 1
                        where
                                                                          1
                                            x(c) = sgn(c − 1){2[c − log(c) − 1]} 2
                        and y(x) solves
                                                              1  2
                                                   y − log(y) =  x + 1.
                                                              2
                          By Theorem 9.16,
                                        x   √    √               √                 1
                                   ∞

                                              zφ( zx) dx = [1 −  ( zx(c))] h(0) + O
                                  x(c) y(x) − 1                                    z
                                                             x(c)/(c − 1) − h(0)  √
                                                           +      √          φ( zx(c))
                                                                    zx(c)
                        where
                                                                             1
                                                  x          [2(y − log(y) − 1)] 2
                                      h(0) = lim       = lim                  = 1.
                                            x→0 y(x) − 1  y→1     |y − 1|
                        Hence,
                                    ∞

                                         x    √   √               √               1
                                               zφ( zx) dx = [1 −  ( zx(c))] 1 + O
                                   x(c) y(x) − 1                                  z
                                                              x(c)/(c − 1) − 1  √
                                                            +     √         φ( zx(c))
                                                                    zx(c)
                        and
                                                  √
                                               1   (2π)        z      √               1
                              Pr(X ≥ cE(X)) =      √    exp(−z)z [1 −  ( zx(c))] 1 + O
                                               (z)   z                                z
                                                x(c)/(c − 1) − 1  √
                                             +     √         φ( zx(c)).
                                                     zx(c)
                        Using Stirling’s approximation for  (z)in this expression yields

                                                        √              1
                                   Pr(X ≥ cE(X)) = [1 −  ( zx(c))] 1 + O
                                                                        z
                                                    x(c)/(c − 1) − 1  √
                                                  +     √         φ( zx(c)) as z →∞.
                                                         zx(c)
                          For comparison, we may consider approximations based on Laplace’s method. The
                        function g(y) = log(y) − y is maximized at y = 1 and is strictly decreasing on the interval
                        (1, ∞). Hence, if c < 1, we may use the approximation given in Theorem 9.14, leading to
                        the approximation
                                                       z−1
                                                      z 2       √            −1
                                       Pr(X ≥ cE(X)) =    exp(−z) (2π)[1 + O(z )].          (9.6)
                                                       (z)
   296   297   298   299   300   301   302   303   304   305   306