Page 299 - Elements of Distribution Theory
P. 299

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                             9.6 Uniform Asymptotic Approximations           285

                        and
                                                     3            3
                                              
            

               2
                                          sup |g (x)|≤  sup |h (x)|≤  c 2 exp d 2 x
                                              n            n
                                           n         2  n         2
                        and
                                                                   
   2
                                               sup |g (x) − 1|≤ c 3 exp d 3 x

                                                    n
                                                n
                        for some constants c 2 , d 2 , c 3 , d 3 .It follows that
                             ∞                      ∞                    ∞

                                   √    √            √    √               √    √

                               g (x) nφ( nx) dx −      nφ( nx)dx  ≤ c 3     nφ( (n − 2d 3 )x) dx.
                                n
                            z                      z                    z
                          Note that
                                  ∞

                                    √    √                     1           √
                                      nφ( (n − 2d 3 )x) dx = √       [1 −  ( (n − 2d 3 )z)].
                                 z                         (1 − 2d 3 /n)
                        Hence,
                                     1     ∞  √    √               √     1
                                          g (x) nφ( nx) dx = [1 −  ( nz)] [1 + R n (z)]

                                           n
                                     n  z                                n
                        where
                                                                    √
                                                       1      1 −  ( (n − 2d 3 )z)
                                        |R n (z)|≤ c 3 √               √       .
                                                    (1 − 2d 3 /n)  1 −  ( nz)
                          The result follows provided that, for any M < ∞,
                                              sup |R n (z)|= O(1) as n →∞.
                                              z≤M
                                            √
                        First note that, for z < 1/ n
                                                            1         1
                                             |R n (z)|≤ c 3 √             .
                                                         (1 − 2d 3 /n) 1 −  (1)
                          By Theorem 9.11,
                                            √                 1     1  √
                                      1 −  (( (n − 2d 3 )z) ≤ √      φ( (n − 2d 3 )z)
                                                            (n − 2d 3 ) z
                        and
                                                            √  2
                                                    √        nz   1  √
                                              1 −  ( nz) ≥         φ( nz).
                                                                2
                                                           1 + nz z
                                      √
                        Hence, for z ≥ 1/ n,
                                                          2c 3     
   2
                                               |R n (z)|≤       exp d 3 z  .
                                                       1 − 2d 3 /n
                          It follows that
                                                      1         1       2c 3     
    2

                              sup |R n (z)|≤ max c 3 √              ,         exp d 3 M  ,
                              z≤M                 (1 − 2d 3 /n) 1 −  (1) 1 − 2d 3 /n
                        proving the result.
   294   295   296   297   298   299   300   301   302   303   304