Page 300 - Elements of Distribution Theory
P. 300

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                            286                       Approximation of Integrals

                            Example 9.13. Consider approximation of the integral
                                                       ∞

                                                              √    √
                                              Q n (z) ≡  exp(x) nφ( nx) dx, z ∈ R,
                                                      z
                            for large n,as discussed in Example 9.12. We may use Theorem 9.16, taking h(x) = exp(x).
                            Then
                                 ∞

                                         √   √               √             1     exp(z) − 1  √
                                   exp(x) nφ( nx) dx = [1 −  ( nz)] 1 + O      +   √      φ( nz)
                                z                                          n         nz
                            and an approximation to Q n (z)isgiven by
                                                           √      exp(z) − 1  √
                                              ¯
                                              Q n (z) = 1 −  ( nz) +  √    φ( nz).
                                                                      nz
                                            √
                              Suppose z = z 0 / n. Then
                                                       √
                                                 exp(z 0 / n) − 1                    1       1
                               ¯
                               Q n (z) = 1 −  (z 0 ) +        φ(z 0 ) = 1 −  (z 0 ) + φ(z 0 )√ + O  .
                                                       z 0                            n      n
                                                                                                √
                            Using the expansion for Q n (z)given in Example 9.12, it follows that, for z = z 0 / n,
                            ¯
                            Q n (z) = Q n (z) + O(1/n)as n →∞,asexpected from Theorem 9.16.
                            Example 9.14 (Probability that a gamma random variable exceeds its mean). Let X
                            denote a random variable with a standard gamma distribution with index z. Then
                                                              1     ∞  z−1
                                              Pr(X ≥ cE(X)) =        t   exp(−t) dt
                                                              (z)  cz
                            where c is a positive constant. We consider approximation of the integral in this expression
                            for large values of z.
                              Using the change-of-variable y = t/z,we may write


                                          ∞                    ∞
                                            t z−1  exp(−t) dt = z z  y z−1  exp(−zy) dy
                                         cz                    c

                                                               ∞  1
                                                         = z z     exp{−z(y − log(y))} dy.
                                                               c  y
                            Hence, consider approximation of the integral
                                                     ∞

                                                       1
                                                         exp{−z(y − log(y))} dy.
                                                       y
                                                    c
                              The first step in applying Theorem 9.16 is to write the integral in the form (9.4). Note
                            that the function y − log(y)is decreasing for y < 1 and increasing for y > 1 with minimum
                            value 1 at y = 1. Hence, consider the transformation
                                                                             1
                                                 x = sgn(y − 1){2[y − log(y) − 1]} 2 .
                            This is a one-to-one function of y with
                                                       1  2
                                                        x = y − log(y) − 1
                                                       2
                            and
                                                                y
                                                         dy =      xdx.
                                                              y − 1
   295   296   297   298   299   300   301   302   303   304   305