Page 298 - Elements of Distribution Theory
P. 298

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                            284                       Approximation of Integrals

                            Proof. We may write
                               ∞                     ∞

                                     √    √                 √   √
                                 h n (x) nφ( nx) dx =  h n (0) nφ( nx) dx
                              z                      z
                                                       ∞

                                                           h n (x) − h n (0)√  √
                                                   +     x              nφ( nx) dx
                                                       z        x
                                                                         ∞
                                                              √            h n (x) − h n (0)√  √
                                                 = h n (0)[1 −  ( nz)] +  x             nφ( nx) dx.
                                                                       z        x
                            Let
                                                             h n (x) − h n (0)
                                                      g n (x) =          .
                                                                  x
                            Note that
                                                    √    √         d   √
                                                     nxφ( nx) =−     φ( nx);
                                                                  dx
                            hence, using integration-by-parts,
                                ∞                                              ∞

                                      √     √           1    √    √    ∞    1        √    √

                                  g n (x) nxφ( nx) dx =− g n (x) nφ( nx)  +      g (x) nφ( nx) dx
                                                                                  n
                               z                        n              z    n  z
                                                            √
                                                          φ( nz)    1  ∞     √    √

                                                    = g n (z) √  +       g (x) nφ( nx) dx.
                                                                          n
                                                              n    n  z
                              It follows that
                                                                                     √
                                        ∞

                                              √    √                   √           φ( nz)
                                          h n (x) nφ( nx) dx = h n (0)[1 −  ( nz)] + g n (z) √
                                                                                      n
                                       z
                                                              1     ∞   √    √

                                                            +       g (x) nφ( nx) dx.
                                                                     n
                                                              n  z
                              Hence, the theorem holds provided that
                                           1     ∞  √    √               √
                                                                                 1
                                                g (x) nφ( nx) dx = [1 −  ( nz)]O    ,

                                                 n
                                          n  z                                   n
                            where the O(1/n) term holds uniformly for z ≤ M, for any M < ∞.
                              Note that

                                              h (x)  h n (x) − h n (0)  h n (x) − h n (0) − xh (x)

                                        
      n                                     n
                                       g (x) =     −             =−                     .
                                        n
                                               x          x 2                 x 2
                            Using Taylor’s series approximations,
                                                                      1      2
                                                 h n (x) = h n (0) + h (0) + h (x 1 )x


                                                                n       n
                                                                      2
                            and
                                                      h (x) = h (0) + h (x 2 )x



                                                       n      n      n
                            where |x j |≤|x|, j = 1, 2. Hence,
                                                            1

                                                     g (x) =  h (x 1 ) − h (x 2 )
                                                      n        n      n
                                                            2
   293   294   295   296   297   298   299   300   301   302   303