Page 324 - Elements of Distribution Theory
P. 324

P1: JZP
            052184472Xc10  CUNY148/Severini  May 24, 2005  2:50





                            310                        Orthogonal Polynomials

                            It now follows, as in the proof of Theorem 6.4, that

                                                      ∞

                                                                     2
                                                         ˆ
                                                 lim    ( f (x) − f 0 (x)) dF(x) = 0.
                                                          n
                                                n→∞
                                                     −∞
                              Now return to the proof of the theorem. Write f (x) = f 0 (x) + d(x). Then, for each
                            j = 1, 2,...,
                                    ∞                   ∞                    ∞

                                      f (x) ¯ p (x) dF(x) =  f 0 (x) ¯ p (x) dF(x) +  d(x) ¯ p (x) dF(x).
                                           j
                                                                j
                                                                                    j
                                   −∞                   −∞                  −∞
                            Note that, by the Cauchy-Schwarz inequality,
                                          ∞


                                             ˆ
                                              n           j
                                            ( f (x) − f 0 (x)) ¯ p (x) dF(x)
                                          −∞
                                                                                        1
                                              ∞                      1     ∞           2

                                                                     2
                                                                               2
                                                  ˆ
                                                             2
                                         ≤      ( f (x) − f 0 (x)) dF(x)   ¯ p (x) dF(x)  .
                                                  n                         j
                                              −∞                        −∞
                            Since
                                                   ∞

                                                         2
                                                     ¯ p (x) dF(x) = 1,  j = 1,...,
                                                      j
                                                  −∞
                            and

                                              ∞
                                                 ˆ
                                                            2
                                                ( f (x) − f 0 (x)) dF(x) → 0as n →∞,
                                                  n
                                             −∞
                            it follows that

                                           ∞
                                                                   ˆ
                                              f 0 (x) ¯ p (x) dF(x) = lim f (x) ¯ p (x) dF(x) = α j .  (10.7)
                                                                        j
                                                                    n
                                                   j
                                          −∞                  n→∞
                            Since
                                                      ∞

                                                         f (x) ¯ p (x) dF(x) = α j ,
                                                             j
                                                     −∞
                            it follows that

                                                 ∞
                                                   d(x) ¯ p (x) dF(x) = 0,  j = 0, 1,...
                                                        j
                                                −∞
                            so that
                                                ∞

                                                  d(x)p j (x) dF(x) = 0,  j = 0, 1,....
                                               −∞
                            By completeness of {p 0 , p 1 ,...}, d = 0 and, hence,
                                                      ∞

                                                         ˆ
                                                                    2
                                                 lim    ( f (x) − f (x)) dF(x) = 0.            (10.8)
                                                          n
                                                n→∞
                                                      −∞
                            This verifies part (i) of the theorem.
   319   320   321   322   323   324   325   326   327   328   329