Page 325 - Elements of Distribution Theory
P. 325

P1: JZP
            052184472Xc10  CUNY148/Severini  May 24, 2005  2:50





                                         10.2 General Systems of Orthogonal Polynomials      311

                          To show parts (ii) and (iii), note that

                                  ∞                       ∞                ∞
                                     ˆ          2               2             ˆ   2
                                   ( f (x) − f (x)) dF(x) =  f (x) dF(x) −   f (x) dF(x)
                                                                              n
                                     n
                                 −∞                       −∞              −∞
                                                          ∞
                                                                          n
                                                                2        
   2
                                                      =      f (x) dF(x) −  α .
                                                                              j
                                                          −∞             j=0
                        This proves that part (ii) and part (iii) now follows from (10.8).
                          Finally, consider part (iv). Note that
                                                  2
                                  n                                           n         n

                                                              ∞
                             ∞
                                                                             
        
    2
                                                                   2
                                    β j ¯ p (x) − f (x)  dF(x) =  f (x) dF(x) − 2  β j α j +  β .
                                       j
                                                                                           j
                            −∞   j=0                        −∞               j=0       j=0
                        Hence,
                                                        2

                                       n
                                    ∞ 
                             ∞
                                                                                 2
                                                                      ˆ
                                         β j ¯ p (x) − f (x)  dF(x) −  [ f (x) − f (x)] dF(x)
                                                                       n
                                             j
                                  −∞  j=0                         −∞
                                      n        n         n
                                     
   2    
         
   2
                                   =    β − 2    β j α j +  α
                                          j                 j
                                     j=0      j=0       j=0
                                      n
                                     
          2
                                   =    (α j − β j ) ,
                                     j=0
                        proving the result.
                          Hence, according to Theorem 10.6, if {p 0 , p 1 ,...} is complete and

                                                    ∞
                                                          2
                                                       f (x) dF(x) < ∞,
                                                   −∞
                        the function f may be written
                                                      ∞
                                                     
          p j (x)
                                               f (x) =
                                                            ∞      2
                                                        α j
                                                     j=0   −∞  p j (x) dF(x)
                        for constants α 0 ,α 1 ,... given by
                                                      ∞

                                                         f (x)p n (x) dF(x)
                                                      −∞
                                                α n =                  .
                                                        ∞      2
                                                           p n (x) dF(x)
                                                       −∞
                        In interpreting the infinite series in this expression, it is important to keep in mind that it
                        means that
                                                                         2

                                                    n
                                          ∞
                                                   
          p j (x)
                                    lim       f (x) −                     dF(x) = 0.
                                                          ∞      2
                                                       α j
                                    n→∞                      p j (x) dF(x)
                                         −∞         j=0   −∞
                        It is not necessarily true that for a given value of x the numerical series
                                                   n
                                                  
         p j (x)
                                                        ∞      2
                                                     α j
                                                  j=0   −∞  p j (x) dF(x)
                        converges to f (x)as n →∞.
   320   321   322   323   324   325   326   327   328   329   330