Page 460 -
P. 460

The Category WT(R) and the Weierstrass Hopf Algebroid  435

        Substituting, we have


                               2

                                   2
                                                     2
                                                           2
                      2
                 x = v x + r = v (v x + r ) + r = (vv ) x + (v r + r),
        and

                                  3

                        2
                                                        2

                                                            2
                                            2

                  3
             y = v y + v sx + t = v (v y + v s x + t ) + v s(v x + r ) + t

                                     3


                            3
                                                     2
                                        2

                                                3
                              2

                     3
              = (vv ) y + (v v s + (vv ) s)x + (v t + v sr + t).
           If we introduce the following three by three matrix
                                                    
                                          1   r    t
                                         0    2   2
                             M(φ r,s,t,v ) =  v   v s 
                                          0   0   v 3
        with variables r, s, t,v ∈ R, then the substitution rule takes the form of the following
        matrix identity
                                              2         3     2   
            1   r     t     1   r    t       1   r v + r  t v + r sv + t
                                                      2
                                                                    2
                         2
                                      2

           0  v   2  s v   0  v 2  sv   =   0  (vv )    s (vv )     .
                                                                   3
            0   0    v   3  0   0    v 3     0     0          (vv )

        where v = v v and three other relations

                                                                   2
                                                             3

          r = v r + r,    v     2     3   2      2  and t = v t + v sr + t.

                             s = v v s + (vv ) s,
               2

        Here the matrix multiplication is in the opposite order from composition, but with
        the transpose matrices we have a matrix formula for composition
                         tr        tr             tr
                        M (φ r,s,t,v )M (φ r ,s ,t ,v ) = M (φ r ,s ,t ).







        Also the relation between the variables x, y and x , y canbeexpressedbythe matrix
        multiplication formula
                                                                
                                                      1   r    t
                                                               2
                (1, x, y) = (1, x , y )M(φ r,s,t,v ) = (1, x , y ) 0  v 2  v s  .




                                                    
                                                      0   0    v 3

        For v = v = 1 the transpose matrices satisfy the multiplicative relation in the
        opposite order
                                                      
                       1    0   0      1  0   0    1   0  0
                      r      1  0   =   r  1  0   r     1  0   .
                       t     s      1  t  s   1    t     s     1
        (4.3) Remark. If there is a morphism φ r,s,t,v : F(a ) → F(a), then we can express


        the constants a in terms of the constants a i and r, s, t,v. For this we begin with the
                    i
        relation
   455   456   457   458   459   460   461   462   463   464   465