Page 461 -
P. 461

436    Appendix III: Elliptic Curves and Topological Modular Forms

                                                       2
           F(a )(x , y ) = F(a)(x, y) = F(a)(v x + r,v y + v sx + t)

                                                 3
                                         2



                                2
                                       2
                                                    2

                          3

                                                             2
                                              3
                      = (v y + v sx + t) + a 1 (v y + v sx + t)(v x + r)
                                    2
                                                      3
                              3
                                                             2
                                               2

                        + a 3 (v y + v sx + t) − (v x + r) − a 2 (v x + r) 2
                              2
                        − a 4 (v x + r) − a 6 .
                         6    2  5               3                 6    3
                      = v (y ) + v (a 1 + 2s)x y + v (a 3 + a 1 r + 2t)y − v (x )
                           4          2          2
                        − v (a 2 + 3r − s − a 1 s)(x )
                                         2
                           2
                        − v (a 4 + 2ra 2 + 3r − sa 3 − a 1 (rs + t) − 2st)x
                                       2
                                                          2
                                           3
                        − (a 6 + a 4 r + a 2 r + r − a 3 t − a 1 rt − t ).
                            i
           Thus we can write v a = a i + δ i (r, s, t,v) where δ i (r, s, t,v) is a polynomial
                             i
        over the integers in all a j with j < i. We have the relations where the polynomials
        δ i = δ i (r, s, t, 1) are explicitly given by

                    a = a 1 + 2s          thus δ 1 = 2s
                     1

                    a = a 2 − a 1 s + 3r − s 2  thus δ 2 =−a 1 s + 3r − s 2
                     2

                    a = a 3 + a 1 r + 2t  thus δ 3 = a 1 r + 2t
                     3
                                                     2
                    a = a 4 + 2a 2 r − a 1 (rs + t) − a 3 s + 3r − 2st

                     4
                                                          2
                         thus δ 4 = 2a 2 r − a 1 (rs + t) − a 3 s + 3r − 2st
                                    2
                                         3

                    a = a 6 + a 4 r + a 2 r + r − a 3 t − a 1 rt − t 2
                     6
                                                             2
                                              3
                                          2
                         thus δ 6 = a 4 r + a 2 r + r − a 3 t − a 1 rt − t .
                                                     3
                                                          ∗
        Given a cubic F(a)(x, y) and a four tuple (r, s, t,v) ∈ T × R there exists a unique

        cubic F(a )(x, y) with the morphism

                                φ r,s,t,v : F(a ) → F(a).
        This means that the groupoid WT (R) is of the form of group object G(R) acting on
        the set of WP(R) of Weierstrass polynomials over R by substitution, or as in (2.9)
        we have WT (R) = WP(R)
G(R) .


        (4.4) Remark. Let w : R → R be a morphism of commutative rings. There is an

        associated functor WT (w) : WT (R ) → WT (R ) given by WT (w)(F(a)(x, y)) =
        F(w(a))(x, y) and
                          WT (w)(φ r,s,t,v ) = φ w(r),w(s),w(t),w(v) .

        For a second morphism v : R → R of rings we have the composition of functors
        WT (v)WT (w) = WR(vw).
           We have constructed a functor from commutative rings to the category of small
        categories, and now we show that it is representable by a Hopf algebroid, that is, a
        cocategory in the category of commutative rings.
   456   457   458   459   460   461   462   463   464   465   466