Page 14 - Engineered Interfaces in Fiber Reinforced Composites
P. 14
Contents xi
4.5.2. Relative Displacements and Degradation Function 157
4.5.3. Degradation of Interface Frictional Properties 161
References 164
Chapter 5. Surface Treatments of Fibers and Effects on Composite Properties 171
5.1. Introduction 17 1
5.2. Glass Fibers and Silane Coupling Agents 172
5.2.1. Structure and Properties of Glass Fibers 172
5.2.2. Silane Treatments of Glass Fibers 174
5.3. Carbon Fibers 183
5.3.1. Structure and Properties of Carbon Fibers 183
5.3.2. Surface Treatments of Carbon Fibers 186
5.4. Polymeric Fibers 196
5.4.1. Aramid Fibers 196
5.4.2. Ultrahigh Modulus Polyethylene (UHMPE) Fibers 201
5.5. Inorganic Fibers 205
5.5.1. Introduction 205
5.5.2. Selection of Coating Materials and Coating Techniques 206
5.5.3. Carbon Fibers 210
5.5.4. Boron Fibers 214
5.5.5. Silicon Carbide (Sic) Fibers 216
5.5.6. Alumina (A1,OJ Fibers 223
References 228
Chapter 6. Interface Mechanics and Fracture Toughness Theories 239
6.1. Interface-related Fracture Toughness Theories 239
6.1.1. Introduction 239
6.1.2. Fiber-Matrix Interface Debonding in Mode I1 Shear 242
6.1.3. Post-debond Friction 243
6.1.4. Stress Redistribution 243
6.1.5. Fiber Pull-out 243
6.1.6. Total Fracture Toughness Theories 245
6.1.7. Fracture of Ductile Fibers and Ductile Matrices 247
6.2. Toughness Theories for Short and Randomly Oriented Fiber
Composites 247
6.2.1. Introduction 247
6.2.2. Fiber Pull-out Dominant Fracture Mechanisms 248
6.2.3. Matrix Dominant Fracture Mechanisms 250
6.2.4. Total Fracture Toughness Theory 252
6.3. Fracture Toughness Maps 254
6.3.1. Continuous Fiber Composites 255
6.3.2. Short Fiber Composites 255
6.4. Crack-Interface Interactions 257