Page 257 - Engineering Plastics Handbook
P. 257

Polyphenylene Ether (PPE) Blends and Alloys  219

        Regrind. In addition to the regrind comments for modified PPE, increased
        drying time is recommended since the sprues, runners, and nondegraded
        parts before and after grinding will have absorbed moisture.


        Summary
        Clearly the PPE-based resins offer one of the most versatile product
        families. Products based on blends with polystyrene are available as
        unfilled and reinforced grades and nonbrominated and nonchlorinated
        flame-retardant (ECO-label compliant) grades. Moreover, modified PPE
        can be opaque or transparent, rigid or flexible. In addition, modified PPE
        offers a broad range of processing options including injection molding,
        extrusion, blow molding, expanded foam, and structural foam molding.
          In addition, PPE alloys with polyamides and polypropylene are available
        in unfilled and reinforced grades. These grades exhibit enhanced perform-
        ance over polyamides and polypropylene. Moreover, the PPE/polyamide
        grades include conductive grades for use in electrostatic online painting
        and a nonbrominated, nonchlorinated, nonred phosphorous flame-retar-
        dant grade.
          Finally, PPE is used in thermoset resins to enhance their performance.


        References

         1. A. S. Hay, J. Polym. Sci., 58, 581, 1962.
         2. A. S. Hay, Adv. Polym. Sci., 4, 496, 1967.
         3. D. W. Fox and E. N. Peters, Applied Polymer Science, 2d ed., R. W. Tess and G. W.
           Poehlein, eds., American Chemical Society, Washington, DC, USA, 1985.
         4. A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance, J. Amer. Chem. Soc.,
           81, 6335, 1959.
         5. C. C. Price and K. Nakaoka, Macromolecules, 4, 363, 1971.
         6. D. M. White and G. D. Cooper, Kirk-Othmer Encyclopedia of Chemical Technology,
           vol. 18, 3d ed., Interscience, New York, N.Y., USA, 1982, p. 595.
         7. J. G. Bennett and G. D. Cooper, U.S. Patent 3,661,848, Apr. 9, 1972. Assigned to
           General Electric Co.
         8. J. G. Bennett and G. D. Cooper, U.S. Patent 4,092,294, May 30, 1978. Assigned to
           General Electric Co.
         9. G. D. Cooper, H. S. Blanchard, G. F. Endres, and H. Finkbeiner, J. Amer. Chem. Soc.,
           87, 3996, 1965.
        10. W. J. Mijs, O. E. van Lohuizen, J. Bussink, and L. Vollbracht, Tetrahedron, 23, 2253, 1967.
        11. E. McNelis, J. Org. Chem., 31, 1255, 1966.
        12. H. L. Finkbeiner, G. F. Endres, H. S. Blanchard, and J. W. Eustance, SPE Trans., 2,
           110, 1962.
        13. D. M. White, Polym. Prep. Am. Chem. Soc. Div. Polym. Chem., 13, 373, 1972.
        14. F. Laupetre and L. Monnerie, Eur. Polym. J., 11, 845, 1975.
        15. J. Bialy, I. Penczek, and J. Mlodecka, Polimery, 19, 412, 1974.
        16. E. N. Peters, Comprehensive Desk Reference of Polymer Characterization and Analysis,
           R. F. Brady, Jr., ed., Oxford University Press, New York, N.Y., USA, 2003, Chapter 1.
        17. E. P. Cizek, U.S. Patent 3,338,435, 1968. Assigned to General Electric Co.
        18. E. N. Peters, Engineering Thermoplastics, A. Adedeji, ed., Wiley, New York, N.Y.,
           USA, 2005.
   252   253   254   255   256   257   258   259   260   261   262