Page 122 - Essentials of applied mathematics for scientists and engineers
P. 122

book   Mobk070    March 22, 2007  11:7








                     112  ESSENTIALS OF APPLIED MATHEMATICS FOR SCIENTISTS AND ENGINEERS
                                                       y


                                                               r


                                                                                x




                       FIGURE 7.1: Polar representation of a complex variable z



                            Addition gives

                                                          e iθ  + e −iθ
                                                   cos θ =          = cosh(iθ)                       (7.7)
                                                              2
                       and subtraction gives


                                                         e  iθ  − e  −iθ
                                                 sin θ =          =−i sinh(iθ)                       (7.8)
                                                            2i

                            Note that

                                       1    x+iy  −x−iy     1    x               −x
                              cosh z =   e    + e      =     e [cos y + i sin y] + e  [cos y − i sin y]
                                       2                  2
                                                        x
                                        x
                                       e + e −x        e − e  −x
                                    =          cos y + i       sin y
                                          2               2
                                    = cosh x cos y + i sinh x sin y                                  (7.9)

                            The reader may show that


                                                sinh z = sinh x cos y + i cosh x sin y.             (7.10)

                            Trigonometric functions are defined in the usual way:

                                              iz
                                                                  iz
                                             e − e −iz           e + e  −iz            sin z
                                     sin z =              cos z =              tan z =              (7.11)
                                                2i                   2                cos z
                            Two complex numbers are equal if and only if their real parts are equal and their imaginary
                       parts are equal.
   117   118   119   120   121   122   123   124   125   126   127