Page 117 - Essentials of applied mathematics for scientists and engineers
P. 117

book   Mobk070    March 22, 2007  11:7








                                               INTEGRAL TRANSFORMS: THE LAPLACE TRANSFORM           107
                   6.5.2  Repeated Roots
                   We now consider the case when q(s ) has a repeated root (s + a) n+1 .Then

                                           p(s )     φ(s )
                                    F(s ) =     =               n = 1, 2, 3,...
                                           q(s )  (s − a) n+1

                                             A a       A 1              A n
                                        =         +         + ··· +           + H(s )           (6.57)
                                           (s − a)  (s − a) 2       (s − a) n+1
                   It follows that

                                         n
                          φ(s ) = A 0 (s − a) + ··· + A m (s − a) n−m  + ··· + A n + (s − a) n+1 H(s )  (6.58)

                   By letting s →a we see that A n = φ(a). To find the remaining A’s, differentiate φ (n – r)times
                   and take the limit as s → a.


                                                  φ (n−r)  (a) = (n − r)!A r                    (6.59)

                   Thus

                                                   n   (n−r)
                                                     φ    (a)    1

                                           F(s ) =                     + H(s )                  (6.60)
                                                      (n − r)! (s − a) r+1
                                                  r=0
                   If the inverse transform of H(s ) (the part containing no repeated roots) is h(t) it follows from
                   the shifting theorem and the inverse transform of 1/s m  that
                                                     n    (n−r)
                                                        φ    (a)  r at
                                              f (t) =            t e  + h(t)                    (6.61)
                                                        (n − r)!r!
                                                    r=0
                   Example 6.8. Inverse transform with repeated roots

                                           s            A 0       A 1       A 2       C
                              F(s ) =              =         +         +         +
                                     (s + 2) (s + 1)  (s + 2)  (s + 2) 2  (s + 2) 3  (s + 1)
                                            3
                                    3
                   Multiply by (s + 2) .
                                    s              2                    C(s + 2) 3
                                        = A 0 (s + 2) + A 1 (s + 2) + A 2 +      = φ(s )
                                 (s + 1)                                 (s + 1)
                   Take the limit as s →−2,


                                                         A 2 = 2
   112   113   114   115   116   117   118   119   120   121   122