Page 115 - Essentials of applied mathematics for scientists and engineers
P. 115

book   Mobk070    March 22, 2007  11:7








                                               INTEGRAL TRANSFORMS: THE LAPLACE TRANSFORM           105
                   Note also that the limit of
                                                            s − a
                                                        p(s )                                   (6.54)
                                                            q(s )

                   as s approaches a is simply p(s )/q (s ).

                        If q(s ) has no repeated roots and is of the form

                                         q(s ) = (s − a 1 )(s − a 2 )(s − a 3 ) ··· (s − a n )  (6.55)

                   then
                                                              n
                                                      p(s )        p(a m )
                                               L −1       =           e a m t                   (6.56)
                                                    q(s )       q (a m )

                                                            m=1
                   Example 6.6. Find the inverse transform of


                                                             4s + 1
                                                 F(s ) =
                                                                  2
                                                          2
                                                        (s + s )(4s − 1)
                   First separate out the roots of q(s )
                                             q(s ) = 4s (s + 1)(s + 1/2)(s − 1/2)
                                                     4
                                                               2
                                                           3
                                             q(s ) = 4s + 4s − s − s
                                                             2
                                                      3

                                            q (s ) = 16s + 12s − 2s − 1
                   Thus
                                              q (0) =−1     p(0) = 1

                                              q (−1) =−3      p(−1) =−3

                                              q (−1/2) = 1     p(−1/2) =−1


                                              q (1/2) = 3    p(1/2) = 3
                                              f (t) = e −t  − e −t/2  + e t/2  − 1

                   Example 6.7. Solve the differential equation


                                                     y − y = 1 − e  3t
                   subject to initial conditions


                                                     y (0) = y(0) = 0
   110   111   112   113   114   115   116   117   118   119   120