Page 111 - Essentials of applied mathematics for scientists and engineers
P. 111

book   Mobk070    March 22, 2007  11:7








                                               INTEGRAL TRANSFORMS: THE LAPLACE TRANSFORM           101
                   and with

                                              G(s ) = L[ f (t)] = sF(s ) − f (0)

                   we find that

                                               d f
                                                 2
                                                        2
                                            L        = s F(s ) − sf (0) − f (0)                 (6.25)

                                                dt 2
                   In general
                                   d f                                          d    f
                                     n                                           n−1
                                             n

                                L         = s F(s ) − s  n−1  f (0) − s n−2  f (0) − ··· −  (0)  (6.26)
                                    dt n                                        dt n−1
                                           m
                   The Laplace transform of t may be found by using the gamma function,
                                          ∞

                                    m        m −st
                                 L[t ] =    t e  dt   and let x = s t                           (6.27)
                                         0
                                          ∞                      ∞
                                              x

                                                m    dx      1                 (m + 1)
                                    m              −x               m −x
                                 L[t ] =          e      =         x e   dx =                   (6.28)
                                              s       s    s m+1                 s  m+1
                                         x=0                   x=0
                   which is true for all m > −1 even for nonintegers.
                   6.2.10 Laplace Transforms of Integrals



                                                     t
                                                            

                                                L     f (τ)dτ    = L[g(t)]                    (6.29)
                                                   τ=0
                   where dg/dt = f (t). Thus L[dg/dt] = sL[g(t)]. Hence
                                                     t
                                                             
                                                                  1

                                                L      f (τ)dτ    =  F(s )                    (6.30)
                                                                   s
                                                   τ=0
                   6.2.11 Derivatives of Transforms


                                                          ∞

                                                   F(s ) =   f (t)e −st dt                      (6.31)
                                                         t=0
   106   107   108   109   110   111   112   113   114   115   116