Page 110 - Essentials of applied mathematics for scientists and engineers
P. 110

book   Mobk070    March 22, 2007  11:7








                     100  ESSENTIALS OF APPLIED MATHEMATICS FOR SCIENTISTS AND ENGINEERS



                                                                     1
                                                                     h


                                                             t 0-h  t 0


                       FIGURE 6.3: The Dirac delta function


                       The Laplace transform is found term by term,

                                                  1
                                        L[ f (t)] = {1 − 2e −sk [1 − e −sk  + e  −2sk  − e −3sk  ··· ]}
                                                  s
                                                  1       2e −sk     1     1 − e  −sk
                                               =     1 −           =                                (6.21)
                                                  s      1 + e −sk   s   1 + e  −sk

                       6.2.8  The Dirac delta function
                       Consider a function defined by

                                                        − U t 0 −h
                                                     U t 0
                                                 lim            = δ(t 0 )  h → 0                    (6.22)
                                                         h
                                                 L[δ(t 0 )] = e  −st 0                              (6.23)
                       The function, without taking limits, is shown in Fig. 6.3.


                       6.2.9  Transforms of derivatives



                                                          ∞              ∞
                                                   df        df

                                               L       =       e −st dt =  e −st d f                (6.24)
                                                   dt        dt
                                                         t=0           t=0
                       and integrating by parts
                                                                ∞
                                          df

                                       L      = f (t)e  −st   ∞  + s  f (t)e −st dt = sF(s ) − f (0)
                                          dt             0
                                                              t=0
                       To find the Laplace transform of the second derivative we let g(t) − f (t). Taking the Laplace

                       transform

                                                     L[g (t)] = sG(s ) − g(0)
   105   106   107   108   109   110   111   112   113   114   115