Page 107 - Essentials of applied mathematics for scientists and engineers
P. 107

book   Mobk070    March 22, 2007  11:7








                                                INTEGRAL TRANSFORMS: THE LAPLACE TRANSFORM           97
                   6.2.4  Sine and cosine
                   Now consider the sine and cosine functions. We shall see in the next chapter (and you should
                   already know) that

                                                 e ikt  = cos(kt) + i sin(kt)                   (6.10)

                   Thus the Laplace transform is

                                                         1          s + ik          s          k
                      L[e  ikt ] = L[cos(kt)] + iL[sin(kt)] =  =               =         + i
                                                       s − ik   (s + ik)(s − ik)  s + k 2   s + k 2
                                                                                   2
                                                                                             2
                                                                                                (6.11)
                   so
                                                                  k
                                                   L[sin(kt)] =                                 (6.12)
                                                                2
                                                               s + k 2
                                                                  s
                                                   L[cos(kt)] =                                 (6.13)
                                                                2
                                                               s + k 2
                   6.2.5  Hyperbolic functions
                   Similarly for hyperbolic functions

                                               1               1    1       1         k

                                                  kt
                              L[sinh(kt)] = L   (e − e  −kt ) =         −        =              (6.14)
                                                                                    2
                                               2              2    s − k  s + k    s − k 2
                   Similarly,
                                                                  s
                                                  L[cosh(kt)] =                                 (6.15)
                                                                 2
                                                                s − k 2
                   6.2.6  Powers of t: t m
                                                              m
                   We shall soon see that the Laplace transform of t is
                                                      (m + 1)
                                                m
                                             L[t ] =                m > −1                      (6.16)
                                                       s  m+1
                   Using this together with the s domain shifting results,
                                                               (m + 1)
                                                    m −at
                                                 L[t e   ] =                                    (6.17)
                                                             (s + a) m+1
                   Example 6.1. Find the inverse transform of the function

                                                               1
                                                     F(s ) =
                                                            (s − 1) 3
   102   103   104   105   106   107   108   109   110   111   112