Page 112 - Essentials of applied mathematics for scientists and engineers
P. 112

book   Mobk070    March 22, 2007  11:7








                     102  ESSENTIALS OF APPLIED MATHEMATICS FOR SCIENTISTS AND ENGINEERS
                       so

                                                               ∞
                                                      dF              −st

                                                          =−     tf (t)e  dt                        (6.32)
                                                      ds
                                                             t=0
                       and in general
                                                        n
                                                       d F
                                                                    n
                                                            = L[(−t) f (t)]                         (6.33)
                                                       ds n
                       For example
                                                            d     k           2sk
                                            L[t sin(kt)] =−              =                          (6.34)
                                                                 2
                                                           ds   s + k 2    (s + k )
                                                                                 2 2
                                                                             2
                       6.3    LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH
                              CONSTANT COEFFICIENTS
                       Example 6.5. A homogeneous linear ordinary differential equation
                            Consider the differential equation

                                                        y + 4y + 3y = 0

                                                        y(0) = 0                                    (6.35)

                                                        y (0) = 2


                                                                            2
                                                       2


                                              L[y ] = s Y − sy(0) − y (0) = s Y − 2                 (6.36)
                                                     L[y ] = sY − y(0) = s Y                        (6.37)

                       Therefore
                                                         2
                                                       (s + 4s + 3)Y = 2                            (6.38)

                                                          2           A       B
                                               Y =               =       +                          (6.39)
                                                    (s + 1)(s + 3)  s + 1   s + 3
                       To solve for A and B, note that clearing fractions,
                                               A(s + 3) + B(s + 1)        2
                                                                  =                                 (6.40)
                                                  (s + 1)(s + 3)     (s + 1)(s + 3)
                       Equating the numerators, or

                                           A + B = 03A + B = 2:       A = 1   B =−1                 (6.41)
   107   108   109   110   111   112   113   114   115   116   117