Page 147 - Essentials of applied mathematics for scientists and engineers
P. 147

book   Mobk070    March 22, 2007  11:7








                                                          SOLUTIONS WITH LAPLACE TRANSFORMS         137
                        The solution for W(x, t) is then obtained by superposition:

                                                       ∞
                                                                2
                                                                  2
                                                              −n π t
                                             W(x, t) =    K n e    sin(nπx)
                                                       n=0
                   and using the orthogonality principle
                                      1                            1
                                        x                                          1

                                                                       2
                                           2
                                 e  −λ    (x − 1) sin(nπx)dx = K n   sin (nπx)dx =   K n
                                        6                                          2
                                    x=0                          n=0
                   so
                                            1
                                    ∞
                                                                       2
                                                                     2
                                        −λ    x  2                 −n π t
                          W(x, t) =    e       (x − 1) sin(nπx)dx e     sin(nπx)
                                              3
                                    n=1
                                          x=0

                                     x                1  x                              2  2
                                                 ∞
                                                            2
                                            2
                        P(x,λ, t) =    (1 − x ) +         (x − 1) sin(nπx)dx sin(nπx) e −n π t  e  −λ
                                     6               x=0  3
                                                 n=1
                   and
                                            x
                                           !            "
                                                   2
                           P(x,λ, t − λ) =   (1 − x )e −λ
                                            6
                                              ∞    1
                                                                                            2
                                                                                          2
                                                                                     2
                                                                                       2
                                                     x   2                         −n π t  n π λ−λ
                                           +           (x − 1) sin(nπx)dx sin(nπx) e    e
                                                  x=0  3
                                             n=1
                                                    1
                                           ∞
                         ∂                     2  2     x     2            −n π t  (n π −1)λ
                                                                                   2
                                                                               2
                                                                             2
                                                                                    2
                           P(x,λ, t − λ) =    n π       (1 − x )sin(nπx)dxe     e
                         ∂t                           3
                                           n=1    x=0
                        According to Duhamel’s theorem, the solution for u(x, t)isthen
                                        1                                    t
                                          x
                                    ∞
                                                                                  2
                                                                                   2
                                                  2  2  2                       −n π (t−λ) −λ
                           u(x, t) =        (1 − x )n π sin(nπx)dx sin(nπx)    e          dλ
                                          3
                                    n=1
                                      x=0                                  λ=0
                                                  1
                                    ∞     2  2
                                                                                 2
                                                                                   2
                                         n π        x      2             −t    −n π t
                                 =                   (1 − x )sin(nπx)dx [e  − e     ]sin(nπx)
                                           2
                                        2
                                       n π − 1      3
                                    n=1
                                                x=0
                   Example 8.9. Reconsider Example 8.6 in which u t = u xx on the half space, with
                                                      u(x, 0) = 0
                                                      u(0, t) = f (t)
   142   143   144   145   146   147   148   149   150   151   152