Page 155 - Essentials of applied mathematics for scientists and engineers
P. 155

book   Mobk070    March 22, 2007  11:7








                                                                  STURM–LIOUVILLE TRANSFORMS        145
                        The lower boundary condition at x = a is then


                      [ (a,λ) f (a) −   (a,λ) f (a)]r(a)


                                                                                           
                            (a,λ)N [ f (a)] cos α +  (a,λ)N α [ f (a)] sin α −   (a,λ)N α [ f (a)] cos α


                                   α
                      =                                                                     r(a)
                           +  (a,λ)N [ f (a)] sin α


                                     α
                                                                                                (9.10)
                        But if  (x,λ) is chosen to satisfy the Sturm–Liouville equation and the boundary con-
                   ditions then
                                       N α [ (x,λ)] x=a =  (a,λ)cos α +   (a,λ)sin α

                                                                                                (9.11)
                                       N β [ (x,λ)] x=b =  (b,λ)cos β +   (b,λ)sin β

                   and

                                       (a,λ) = N α [ (a,λ)] cos α − N [ (a,λ)] sin α
                                                                    α
                                                                                                (9.12)


                                        (a,λ) = N [ (a,λ)] cos α + N α [ (a,λ)] sin α
                                                  α
                   and we have
                          [(N [ (a,λ)] cos α + N α [ f (a)] sin α)(N α [ (a,λ)] cos α + N [ (a,λ)] sin α)


                             α
                                                                                 α


                               − (N [ (a,λ)] cos α + N α [ (a,λ)] sin α)(N [ f (a)] cos α
                                   α                                  α
                               − N α [ f (a)] sin α)]r(a)                                       (9.13)


                            ={N [ f (a)]N α [ (a,λ)] − N α [ f (a)]N [ (a,λ)]}r(a)
                                 α                              α
                        If the kernel function is chosen so that N α [ (a,λ)] = 0, for example, the lower boundary
                   condition is

                                                −N α [ f (a)]N [ (a,λ)]r(a)                     (9.14)
                                                            α
                        Similarly, at x = b


                                 (b,λ) f (b) −   (b,λ) f (b) r(b) =−N β [ f (b)]N [ (b,λ)]r(b)  (9.15)

                                                                             β
                        Since  (x,λ) satisfies the Sturm–Liouville equation, there are n solutions forming a set
                   of orthogonal functions with weight function p(x)and

                                                             2
                                                n (x,λ n ) =−λ p(x)  n (x,λ n )                 (9.16)
                                                             n
   150   151   152   153   154   155   156   157   158   159   160