Page 6 - Essentials of applied mathematics for scientists and engineers
P. 6

MOBK070-FM     MOBKXXX-Sample.cls    March 22, 2007  13:6








                     vi  ESSENTIALS OF APPLIED MATHEMATICS FOR SCIENTISTS AND ENGINEERS
                                  2.1.13 Getting to One Nonhomogeneous Condition . . . ................... 20
                                  2.1.14 Separation of Variables . . . ........................................ 21
                                  2.1.15 Choosing the Sign of the Separation Constant. . ....................21
                                  2.1.16 Superposition . .................................................. 22
                                  2.1.17 Orthogonality . .................................................. 22
                                  2.1.18 Lessons .........................................................23
                                  2.1.19 Scales and Dimensionless Variables. ...............................23
                                  2.1.20 Relocating the Nonhomogeneity . . . ............................... 24
                                  2.1.21 Separating Variables . . ........................................... 25
                                  2.1.22 Superposition . .................................................. 25
                                  2.1.23 Orthogonality . .................................................. 25
                                  2.1.24 Lessons .........................................................26
                                            Problems .................................................... 26
                            2.2   Vibrations . ............................................................. 26
                                  2.2.1  Scales and Dimensionless Variables. ...............................27
                                  2.2.2  Separation of Variables . . . ........................................ 27
                                  2.2.3  Orthogonality . .................................................. 28
                                  2.2.4  Lessons .........................................................29
                                            Problems .................................................... 29
                                  Further Reading ........................................................ 29

                       3.   Orthogonal Sets of Functions ................................................. 31
                            3.1   Vectors.................................................................31
                                  3.1.1  Orthogonality of Vectors ......................................... 31
                                  3.1.2  Orthonormal Sets of Vectors......................................32
                            3.2   Functions .............................................................. 32
                                  3.2.1  Orthonormal Sets of Functions and Fourier Series . ................. 32
                                  3.2.2  Best Approximation..............................................34
                                  3.2.3  Convergence of Fourier Series.....................................35
                                  3.2.4  Examples of Fourier Series........................................36
                                            Problems .................................................... 38
                            3.3   Sturm–Liouville Problems: Orthogonal Functions . ......................... 39
                                  3.3.1  Orthogonality of Eigenfunctions . ................................. 40
                                            Problems .................................................... 42
                                  Further Reading ........................................................ 43

                       4.   Series Solutions of Ordinary Differential Equations . ........................... 45
                            4.1   General Series Solutions . . ............................................... 45
   1   2   3   4   5   6   7   8   9   10   11