Page 7 - Essentials of applied mathematics for scientists and engineers
P. 7

MOBK070-FM     MOBKXXX-Sample.cls    March 22, 2007  13:6








                                                                                        CONTENTS     vii
                              4.1.1  Definitions . ..................................................... 45
                              4.1.2  Ordinary Points and Series Solutions .............................. 46
                              4.1.3  Lessons: Finding Series Solutions for Differential Equations
                                     with Ordinary Points.............................................48
                                        Problems . . .................................................. 48
                              4.1.4  Regular Singular Points and the Method of Frobenius............... 49
                              4.1.5  Lessons: Finding Series Solution for Differential Equations with
                                     Regular Singular Points .......................................... 54
                              4.1.6  Logarithms and Second Solutions . ................................ 55
                                        Problems . . .................................................. 57
                        4.2   Bessel Functions ........................................................ 58
                              4.2.1  Solutions of Bessel’s Equation. ....................................58
                                        Here are the Rules ............................................ 61
                              4.2.2  Fourier–Bessel Series. ............................................64
                                        Problems . . .................................................. 68
                        4.3   Legendre Functions . .................................................... 69
                        4.4   Associated Legendre Functions . .......................................... 72
                                        Problems . . .................................................. 73
                              Further Reading ........................................................ 74

                   5.   Solutions Using Fourier Series and Integrals ................................... 75
                        5.1   Conduction (or Diffusion) Problems . ..................................... 75
                              5.1.1  Time-Dependent Boundary Conditions. ...........................80
                        5.2   Vibrations Problems ..................................................... 83
                                        Problems . . .................................................. 88
                        5.3   Fourier Integrals ........................................................ 89
                                        Problem . . . .................................................. 93
                              Further Reading ........................................................ 93

                   6.   Integral Transforms: The Laplace Transform .................................. 95
                        6.1   The Laplace Transform .................................................. 95
                        6.2   Some Important Transforms ............................................. 96
                              6.2.1  Exponentials . ................................................... 96
                              6.2.2  Shifting in the s -domain . ........................................ 96
                              6.2.3  Shifting in the Time Domain ..................................... 96
                              6.2.4  Sine and Cosine ................................................. 97
                              6.2.5  Hyperbolic Functions . ........................................... 97
                                                 m
                              6.2.6  Powers of t: t .................................................. 97
   2   3   4   5   6   7   8   9   10   11   12