Page 429 - Excel for Scientists and Engineers: Numerical Methods
P. 429

406                                        EXCEL: NUMERICAL METHODS



               GaussJordanZ
               Solves a set of N linear equations in N unknowns by the Gaussian-Jordan  method.
               Returns the array of N unknowns,  in column format only.

               Syntax
               Ga ussJorda n  2 (coeff-matrix,const-  vector)
               coeff-matrix   a reference to an N row x  N column array of coefficients
               const-vector   a reference to an N row x  1 column array of constants

               Remarks
                  The coeft-matrix  and the const-vector  tables can contain values or formulas.
                  The GaussJordan2 function is an array function.  You must select an N row x  1
                   column vertical range of cells,  enter the function and then press
                   CONTROL+SHIF~+ENTER (Windows)  or COMMAND+RETURN or
                   CONTROL+SHIF~+RETURN (Macintosh).

               See Also
               GaussElim, GaussJordanl,  GaussSeidel,  SimultEqNL



               GaussJordanl
               Identical to GauddJordan2 except returns a single specified element of the results array.


               Syntax
               Ga ussJorda n  1 (coeff-matrix,const-  vector, value-index)
               coeff-matrix   a reference to an N row x  N column array of coefficients
               const-vector   a reference to an N row x  1 column array of constants
               value-index   a value or a reference to a cell containing a value

               Remarks
                   The coeft-matrix  and the const-vector  tables can contain values or formulas.
                   The GaussJordanl function is an array function.  You must select an N row x  1
                   column vertical  range of cells,  enter the function and then press
                   CONTROL+SHIF~+ENTER (Windows) or COMMAND+RETURN or
                   CONTROL+S HI m+ RETU RN (Macintosh).


               See Also
               GaussElim, GaussJordan2,  GaussSeidel,  SimultEqNL
   424   425   426   427   428   429   430   431   432   433   434