Page 102 - Fiber Fracture
P. 102
FRACTURE PROCESSES IN FINE SILICON CARBIDE FIBRES 87
CONCLUSION
The fracture morphologies of the fine silicon carbide fibres made from polymer
precursors reveal the nature of their microstructures of the fibres. Successive generations
of fibres have been created with reduced oxygen contents so producing better controlled
microstructures and eliminating the presence of amorphous intergranular phases which
limit mechanical behaviour at high temperatures. As a consequence the Sic grains have
become larger and the Young moduli have increased. Whereas the earliest Sic fibres had
Young moduli of around 200 GPa and showed glassy fracture morphologies because of
their nanometric grain structure, the latest, near-stoichiometric fibres have moduli of up
to 400 Gpa and fail with a granular fracture morphology reflecting the large Sic grains
of their structures.
REFERENCES
Berger, M.H., Hochet, N. and Bunsell, A.R. (1995) J. Microsc., 177: 230-241.
Berger, M.H., Hochet, N. and Bunsell, A.R. (1997) J. Microsc., 185: 243-258.
Bunsell, A.R. and Berger, M.H. (1999) Fine Ceramic Fibres. Marcel Dekker, New York, NY.
Fitzer, E. and Heine, M. (1988) In: Fibre Reinforcementsfor Composite Materials, pp. 73-148, A.R. Bunsell
(Ed.). Elsevier, Amsterdam.
Le Coustumer, P., Monthioux, M. and Oberlin, A. (1993) J. Eur: Ceram. SOC., 11: 95-103.
Shibuya, M. and Yamamura, T. (1996) J. Mater: Sci., 31: 3231-3235.
Simon, G. and Bunsell, A.R. (1984) J. Mater Sci., 19: 3658-3670.
Takeda, M., Imai, Y., Ichikawa, H. and Ishikawa, T. (1991) Ceram. Eng. Sci. Pmc., 12: 1007-1018.
Yajima, S., Hayashi, J. and Omori, M. (1975) Chem Lett., 9: 931-934.
Yajima, S., Hasegawa, Y., Hayashi, J. and Iimura, M. (1978) J. Marer: Sci., 13: 2569-2576.
Yajima, S., Iwai, T., Yamamura, T., Okamura, K. and Hasegawa, Y. (1981) J. Marer: Sci., 16: 1349-1355.
Yamamura, T. (1993) In: Proceedings of the Euro-Japanese Colloquium on Ceramic Fibres, ECCM 6,
Bordeaux, pp. 187-201.