Page 92 - Finite Element Analysis with ANSYS Workbench
P. 92

5.1  Basic Equation                                        83



                                                 2  w    2  w                  2   w   2  w  
                                   M      x  D              ;     M      y  D   2      
                                                 x   2  y   2                 x    y   2  
                                                     2 w                     Eh 3
                                   M     xy  D   (1  )   x y     ;    D    12(1  2 )
                                                      
                                                                               
                                           In  these  bending  moment  component  equations,  D
                                 represents the plate flexural rigidity that depends on the Young’s
                                            ,
                                 modulus  E   the  Poisson’s  ratio  ,   and  the  plate  thickness  h.
                                 Substituting  these  bending  moment  component  equations  into  the
                                 governing differential equation above yields the final form of the
                                 plate  differential  equation.    The  final  form  is  of  fourth-order
                                 differential equation containing only one unknown of the deflection
                                 w .

                                     5.1.2  Related Equations
                                           From the relations of the in-plane displacements u and
                                 v with the deflection w, the strain components become,
                                                       u  x         z   2 x   w
                                                 x
                                                                          2
                                                       v  y        z   2 y   w
                                                 y
                                                                          2
                                                                            w
                                                                           2
                                                    xy  u  y     v  x      2z    x y
                                                                            
                                 Then, the stress components are,

                                              E  (     )       E     2  w     2  w    z 
                                        x
                                                                     
                                               
                                              1  2  x    y         1  2    x   2   y   2    
                                                E
                                                                     E
                                           y  1  2  (  x     y )     1  2       2   x   w   2     2  y   w    2      z 
                                                                     
                                               
                                                                     E 
                                                 E
                                            2(1  )           1          x y   2 w        z 
                                       xy
                                                      xy
                                                 
                                                                     
   87   88   89   90   91   92   93   94   95   96   97