Page 242 - Formation Damage during Improved Oil Recovery Fundamentals and Applications
P. 242

B 1 E 2 2B 2 E 1 ފ C  D 1 E 2 2D 2 E 1 ފ  (A.11)  the  (A.12)  the  obtain  (A.13)  cases  nonhomoge-
                 1  C  A                                               of





                       A 2 E 1 2A 1 E 2 Þσ 6 1ð  C 2 E 1 2C 1 E 2 Þσ 6 1ð  10  C NP;ξ  CB C FP;ξ  CB  A@ x D;ξ  t D;ξ  respectively,  In
                   0  0                  transformation,  1  C 5 0  C  A  and  for  fact,  the






                       ð  ð              matrices  0  0  2 σ 6  0      difficult.  adsorptions,
                       ½  ½                               path,
               form,  B 1 E 2 2B 2 E 1 ފ  D 1 E 2 2D 2 E 1 ފ  applying  2 B 2 E 1 ފ  slow  C NP Þ  C FP ð  or reactions


               matrix  0  0              and   B 1 E 2    and   B 1 C 2 2 B 2 C 1 ފC 2;ξ  of

               in  A 2 E 1 2A 1 E 2 Þσ 6 1ð C 2 E 1 2C 1 E 2 Þσ 6 1ð  (A.4),  1 ð  0  1  0  path  1 ð  5 0  derivation  chemical
               (A.10),                   Eq.  follows:  A 2 E 1 2 A 1 E 2 Þσ 6  fast  the  the  of


               Eq.  ð  ½  ð  ½           in  as           along  A 2 C 1 2 A 1 C 2 Þσ 6  B 1 E 2 2 B 2 E 1 ފx D;ξ  make
               system  B 1 C 2 2B 2 C 1 ފ  B 1 D 2 2B 2 D 1 ފ  matrix  becomes  ð  ½  ð  1 ð  assumptions


               for                       coefficient  B 1 C 2 2 B 2 C 1 ފ  determined  1 ½  (E 1 ; E 2 )
               zero  C 2 D 1 2C 1 D 2 Þ  C 2 D 1 2C 1 D 2 Þ  (A.11)  2 A 1 E 2 Þσ 6  terms  different

               be  A 2 C 1 2A 1 C 2 Þσ 6 1ð  ð  A 2 D 1 2A 1 D 2 Þσ 6 1ð  ð  of  Eq.  1 ð  is  A 2 B 1 2 A 1 B 2 ÞC 1;ξ
               must                         for   0  0  0  diagram  A 2 E 1  ð  1 ½  with

               matrix  ð  ½  A 2 D 1 2A 1 D 2 ފ  ð  ½  B 2 D 1 2B 1 D 2 ފ  determinant  matric  2 A 1 C 2 Þσ 6  C NP Þ:  ð  nonhomogeneous  flow


               coefficient  A 2 B 1 2A 1 B 2 Þσ 6 Š  zero  the  coefficient  A 2 C 1  ð  ½  composition  C FP ð  of  multicomponent  different.




               of  A 2 B 1 2A 1 B 2 Þ  ð A 1 C 2 2A 2 C 1 Þσ 6 1ð  B 1 C 2 2B 2 C 1 Þσ 6 1ð  of  form  A 2 B 1 2 A 1 B 2 Þ  0  0  0  the  path  existences  are
               determinant  0  B  ð  ½  B  @  ð  ½  ð  ½  0  C NP;ξ 1  B C FP;ξ C 50  C B  A @ x D;ξ  t D;ξ  Combining  simplest  0  ð  B  B  @  Therefore,  composition  The  two-phase  terms  neous
   237   238   239   240   241   242   243   244   245   246   247