Page 120 - Foundations Of Differential Calculus
P. 120

6. On the Differentiation of Transcendental Functions  103

                 1    1+ x
        II. If y =  ln      , then
                 2    1 − x
                               1           1
                           y =   ln (1 + x) −  ln (1 − x) ,
                               2           2
        so that
                                 1 dx    1 dx    dx
                           dy =  2    +  2   =       .
                                1+ x    1 − x  1 − x 2
                       √
                             2
                  1      1+ x + x
        III. If y =  ln  √          , since
                             2
                  2      1+ x − x
                        1                  1
                                                       2
                                   2
                    y =  ln   1+ x + x −     ln   1+ x − x ,
                        2                  2
        we have
                               1         1
                               2 dx      2 dx       dx
                        dy = √       + √       = √       .
                               1+ x 2    1+ x 2    1+ x 2
        This same result can be more easily obtained if we rationalize the denom-
                                                             √
                                                                    2
        inator by multiplying both numerator and denominator by  1+ x + x.
        The result is
                        1                 2
                                                      2
                                   2
                    y =   ln   1+ x + x   =ln     1+ x + x ,
                        2
                                         √
                                               2
        and as we have seen before, dy = dx/ 1+ x .
        IV. If
                                   √        √
                                     1+ x +   1 − x
                            y =ln   √       √       ,
                                     1+ x −   1 − x
        we let the numerator of this fraction be
                               √        √
                                 1+ x +   1 − x = p
        and the denominator
                               √        √
                                 1+ x −  1 − x = q,
                      p

        so that y =ln   =ln p − ln q and dy = dp/p − dq/q. But
                      q
                 dx        dx        −dx     √       √           −qdx
         dp = √       − √        = √          1+ x −   1 − x = √
              2 1+ x     2 1 − x   2 1 − x 2                   2 1 − x 2
        and
                               dx        dx        pdx
                       dq = √       + √       = √        .
                            2 1+ x    2 1 − x    2 1 − x 2
   115   116   117   118   119   120   121   122   123   124   125