Page 146 - Foundations Of Differential Calculus
P. 146

7. On the Differentiation of Functions of Two or More Variables  129
             and when x replaces dx and y replaces dy,wehave

                                     yx − xy
                                        y 2  =0.

                        x
                             . Then
          II. Let V =    2  2
                       x − y
                                         2
                                       −y dx − yx dy
                                 dV =           3/2  ,
                                          2
                                              2
                                        (x − y )
             so that
                                            2
                                      2
                                    −y x + y x  =0.
                                     2
                                          2
                                   (x − y ) 3/2
                            2

                      y +  x + y 2
         III. Let V =              , which is a function of zero dimension in x
                             2
                     −y +   x + y 2
             and y. Then
                                         2
                                       2x dy − 2xy dx
                                                         ,

                            dV =
                                     2    2    2    2   2
                                    x + y − y      x + y
             and when x and y are substituted for dx and dy, the result is zero.

                        x + y
         IV. Let V =ln         . Then
                        x − y
                                       2xdy − 2ydx
                                  dV =             ,
                                           2
                                          x − y 2
             and
                                    2xy − 2yx  =0.
                                       2
                                     x − y 2
                           √
                             x − y
          V. Let V = arcsin  √      . Then
                             x + y
                                        ydx − xdy
                               dV =        √          ,
                                     (x + y) 2y (x − y)
             and this formula enjoys the same property.

        222. Now let us consider some other homogeneous functions and let V be
        an n-dimensional function of x and y. Hence if we let y = tx, then V takes
                   n
        the form Tx , where T is a function of t.Welet dT =Θ dt so that
                                    n
                             dV = x Θ dt + nTx n−1 dx
   141   142   143   144   145   146   147   148   149   150   151