Page 143 - Foundations Of Differential Calculus
P. 143

126    7. On the Differentiation of Functions of Two or More Variables
        216. Now that we have found this general rule, by means of which func-
        tions of howsoever many variables can be differentiated, it will be pleasant
        to show its use in several examples.
          I. If V = xy, then

                                   dV = xdy + y dx.
                   x
          II. If V =  , then
                   y
                                         dx   xdy
                                   dV =     −     .
                                         y     y 2
                       y
         III. If V = √      , then
                      2
                     a − x 2
                                     dy         yx dx
                             dV = √        +            .
                                     2
                                               2
                                                    2
                                    a − x 2  (a − x ) 3/2
                               m             n
         IV. If V =(αx + βy + γ) (δx +  y + ζ) , then
                                    m−1             n
                 dV = m (αx + βy + γ)   (δx +  y + ζ) (αdx + βdy)
                                      m            n−1
                      + n (αx + βy + γ) (δx +  y + ζ)  (δdx +  dy) ,
             or
                                           m−1           n−1
                         dV =(αx + βy + γ)     (δ +  y + ζ)
             by

                (mαδ + nαδ) xdx +(mβδ + nα ) xdy +(mα  + nβδ) ydx
                 +(mβ  + nβ ) ydy +(mαζ + nγδ) dx +(mβζ + nγ ) dy.

          V. If V = y ln x, then
                                               ydx
                                  dV = dy ln x +   .
                                                 x
                    y
         VI. If V = x , then
                                      y−1      y
                               dV = yx   dx + x dy ln x.
                         y
        VII. If V = arctan , then
                         x
                                        xdy − ydx
                                   dV =           .
                                           2
                                          x + y 2
   138   139   140   141   142   143   144   145   146   147   148