Page 143 - Foundations Of Differential Calculus
P. 143
126 7. On the Differentiation of Functions of Two or More Variables
216. Now that we have found this general rule, by means of which func-
tions of howsoever many variables can be differentiated, it will be pleasant
to show its use in several examples.
I. If V = xy, then
dV = xdy + y dx.
x
II. If V = , then
y
dx xdy
dV = − .
y y 2
y
III. If V = √ , then
2
a − x 2
dy yx dx
dV = √ + .
2
2
2
a − x 2 (a − x ) 3/2
m n
IV. If V =(αx + βy + γ) (δx + y + ζ) , then
m−1 n
dV = m (αx + βy + γ) (δx + y + ζ) (αdx + βdy)
m n−1
+ n (αx + βy + γ) (δx + y + ζ) (δdx + dy) ,
or
m−1 n−1
dV =(αx + βy + γ) (δ + y + ζ)
by
(mαδ + nαδ) xdx +(mβδ + nα ) xdy +(mα + nβδ) ydx
+(mβ + nβ ) ydy +(mαζ + nγδ) dx +(mβζ + nγ ) dy.
V. If V = y ln x, then
ydx
dV = dy ln x + .
x
y
VI. If V = x , then
y−1 y
dV = yx dx + x dy ln x.
y
VII. If V = arctan , then
x
xdy − ydx
dV = .
2
x + y 2