Page 138 - Foundations Of Differential Calculus
P. 138

6. On the Differentiation of Transcendental Functions  121
                  √
                                                             1
                                                       1
                                     1
             Since  2(1 − cos x) = 2 sin x and sin x = 2 sin x cos x,wehave
                                                             2
                                                       2
                                     2
                                        1      1
                                    dy =  dx cos x,
                                        2      2
                                                        1
             which follows immediately from the form y = sin x.
                                                        2
                        1             1
         III. If y = cos ln ,welet p =ln  so that y = cos p. Hence
                        x             x
                                    dy = −dp sin p.
             But since p =ln 1 − ln x,wehave dp = −dx/x, and so
                                         dx     1
                                    dy =   sin ln .
                                         x      x
         IV. If y = e sin x ,wehave

                                   dy = e sin x dx cos x.

          V. If y = e −n/cos x , then

                                      e −n/cos x ndx sin x
                                dy = −                .
                                              2
                                           cos x
                         √
         VI. If y =ln 1 −  1 − e −n/sin x  ,welet p = e −n/sin x , and since


                                  y =ln 1 −   1 − p ,
             we have
                                            dp
                               dy =      √       √     .
                                   2 1 −   1 − p  1 − p
             But

                                     e −n/sin x ndx cos x
                                dp =         2       .
                                           sin x
             When this value is substituted, we obtain
                                      ne −n/sin x dx cos x
                     dy =             √              √          .
                              2             −n/sin x     −n/sin x
                          2 sin x 1 −  1 − e         1 − e
   133   134   135   136   137   138   139   140   141   142   143