Page 137 - Foundations Of Differential Calculus
P. 137

120    6. On the Differentiation of Transcendental Functions
        have as follows:
                         y = sin x,          z = cos x,
                        dy = dx cos x,      dz = −dx sin x,
                        2       2           2       2
                       d y = −dx sin x,    d z = −dx cos x,
                        3       3           3      3
                       d y = −dx cos x,    d z = dx sin x,
                        4       4           4      4
                       d y = −dx sin x,    d z = dx cos x,
                          ....

        206. In a similar way we can find the differentials of all orders of the
        tangent of the arc x. Let y = tan x = sin x/cos x and keep dx constant.
        Then
                             sin x
                         y =     ,
                             cos x
                        dy     1
                           =      ,
                                2
                        dx   cos x
                        2
                       d y  =  2 sin x  ,
                                3
                       dx 2  cos x
                        3
                       d y  =  6       4  ,
                                        2
                                4
                       dx 3  cos x  −  cos x
                        4
                       d y  =  24 sin x  −  8 sin x ,
                                         3
                                5
                       dx 4   cos x   cos x
                        5
                       d y  =  120    120  +  16  ,
                                        4
                                6
                                                2
                       dx 5  cos x  −  cos x  cos x
                        6
                       d y  =  720 sin x  480 sin x  +  32 sin x ,
                                           5
                                 7
                                                     3
                       dx 6   cos x  −  cos x     cos x
                        7
                       d y    5040    6720   2016     64
                                8
                                                        2
                                                4
                                        6
                       dx 7  =  cos x  −  cos x  +  cos x  −  cos x .
        207. Any function whatsoever in which the sine or cosine of an arc is
        involved can be differentiated by these rules. This can be seen from the
        following examples.
          I. If y = 2 sin x cos x = sin 2x, then
                                    2
                                              2
                         dy =2dx cos x − 2dx sin x =2dx cos 2x.

                     1 − cos x         1
          II. If y =        ,or y = sin x, then
                                       2
                        2
                                          dx sin x
                                                    .
                                 dy =
                                      2 2(1 − cos x)
   132   133   134   135   136   137   138   139   140   141   142