Page 133 - Foundations Of Differential Calculus
P. 133

116    6. On the Differentiation of Transcendental Functions
        Hence we conclude as above (paragraph 177) that the general formula will
        be
           d n+1 y  =  1 · 2 · 3 ··· n
           dx n+1   (1 − x ) n+1/2
                         2

                           1 n (n − 1)  n−2
                        n
                   × x +     ·        x
                           2     1 · 2
                        1 · 3 n (n − 1) (n − 2) (n − 3)  n−4
                      +     ·                      x
                        2 · 4       1 · 2 · 3 · 4
                        1 · 3 · 5 n (n − 1) (n − 2) (n − 3) (n − 4) (n − 5)  n−6
                      +        ·                                  x
                        2 · 4 · 6         1 · 2 · 3 · 4 · 5 · 6

                      + ··· .




        201. There remain some quantities that arise as inverses of these func-
        tions, namely the sines and tangents of given arcs, and we ought to show
        how these are differentiated. Let x be a circular arc and let sin x denote its
        sine, whose differential we are to investigate. We let y = sin x and replace
        x by x + dx so that y becomes y + dy. Then y + dy = sin (x + dx) and
                              dy = sin (x + dx) − sin x.

        But
                      sin (x + dx) = sin x · cos dx + cos x · sin dx,

        and since, as we have shown in Introduction,
                                    3          5
                             z     z          z
                      sin z =  −        +            − ··· ,
                             1   1 · 2 · 3  1 · 2 · 3 · 4 · 5
                                 z 2      z 4
                      cos z =1 −     +          − ··· ,
                                 1 · 2  1 · 2 · 3 · 4
        when we exclude the vanishing terms, we have cos dx = 1 and sin dx = dx,
        so that

                           sin (x + dx) = sin x + dx cos x.

        Hence, when we let y = sin x,wehave
                                   dy = dx cos x.

        Therefore, the differential of the sine of any arc is equal to the product of
        the differential of the arc and the cosine of the arc.
   128   129   130   131   132   133   134   135   136   137   138