Page 131 - Foundations Of Differential Calculus
P. 131

114    6. On the Differentiation of Transcendental Functions
         IV. If
                                              2x
                                   y = arctan     ,
                                             1 − x 2
             we let
                                           2x
                                      p =      ,
                                          1 − x 2
             so that
                                  2    2                      2
                         2    1+ x                   2dx 1+ x
                     1+ p =         2    and    dp =          2  .
                                                            2
                                  2
                             (1 − x )                  (1 − x )
                                       2
             Hence, since dy = dp/ 1+ p , we have by the rule for tangents
             (paragraph 197)
                                           2dx
                                     dy =      2  .
                                          1+ x

          V. If                           √
                                                2
                                            1+ x − 1
                                y = arctan           ,
                                               x
             we let                    √
                                             2
                                         1+ x − 1
                                   p =            ,
                                            x
             so that
                                              √
                                          2
                                 2   2+ x − 2 1+ x  2
                                p =
                                            x 2
             and
                                                      2
                               2    √     2   2  √ 1+ x − 1   √ 1+ x 2
                          2+2x − 2 1+ x
                      2
                  1+ p =                    =                      .
                                 x 2                    x 2
             But
                                                   √
                                                         2
                              −dx     2   dx   dx   1+ x − 1
                       dp =   √      x +   2  =     √         .
                            x 2  1+ x 2   x       x 2  1+ x 2
                                      2
             Hence, since dy = dp/ 1+ p ,wehave
                                            dx
                                    dy =         .
                                               2
                                         2(1 + x )
             From this we see that
                                  √
                                         2
                                    1+ x − 1    1
                            arctan            =   arctan x.
                                       x        2
   126   127   128   129   130   131   132   133   134   135   136