Page 32 - Foundations Of Differential Calculus
P. 32

1. On Finite Differences  15
                             I
          Let sin x = y. Then y = sin (x + ω), so that
                                I
                          ∆y = y − y = sin (x + ω) − sin x.
        Now,
                       sin (x + ω) = cos ω · sin x + sin ω · cos x,

                         4
        and we have shown that
                              2        4            6
                             ω       ω             ω
                 cos ω =1 −     +          −               + ···
                            1 · 2  1 · 2 · 3 · 4  1 · 2 · 3 · 4 · 5 · 6
        and

                          ω 3        ω 5             ω 7
             sin ω = ω −      +             −                 + ··· .
                        1 · 2 · 3  1 · 2 · 3 · 4 · 5  1 · 2 · 3 · 4 · 5 · 6 · 7
        When we substitute these series we obtain
                            ω 2       ω 3      ω 4       ω 5
           ∆. sin x = ω cos x −  sin x −  cos x +  sin x +  cos x − ··· .
                             2        6        24        120
        Example 4. In a unit circle, to find the difference of the cosine of the arc
        x.
                                  I
          Let y = cos x. Then since y = cos (x + ω), we have
                              I
                             y = cos ω cos x − sin ω sin x
        and

                        ∆y = cos ω cos x − sin ω sin x − cos x.

        From the series referenced above we obtain
                             ω 2       ω 3      ω 4       ω 5
          ∆. cos x = −ω sin x −  cos x −  sin x +  cos x −   sin x − ··· .
                              2        6        24        120

        22. Since any function of x, which we call y, whether it is algebraic or
        transcendental, has a difference of the form

                                      2     3     4
                        ∆y = Pω + Qω + Rω + Sω + ··· ,
        if we take the difference again, it is clear that the second difference of y has
        the form
                                          3
                            2
                                                4
                                   2
                          ∆ y = Pω + Qω + Rω + ··· .
          4 Introduction, Book I, Chapter VIII; see also note on page 1.
   27   28   29   30   31   32   33   34   35   36   37