Page 27 - Foundations Of Differential Calculus
P. 27

10    1. On Finite Differences
        15. With the aid of this table we can write each of the differences of the
                    n
        powers y = x as follows:
                       n−1      2 n−2     3 n−3      4 n−4
              ∆y = Aωx     + Bω x    + Cω x     + Dω x    + ··· ,
               2       2 n−2       3 n−3       4 n−4
             ∆ y =2Bω x      +6Cω x     +14Dω x      + ··· ,
               3       3 n−3        4 n−4        5 n−5
             ∆ y =6Cω x      +36Dω x     + 150Eω x     + ··· ,
                                      5 n−5
                        4 n−4
               4
                                                    6 n−6
             ∆ y =24Dω x      + 240Eω x    + 1560Fω x     + ··· .
                                                        n
                                                                   m
        In general, the difference of order m of the power x , that is ∆ y,is
        expressed in the following way.
          Let
                             n (n − 1) (n − 2) ··· (n − m +1)
                         I =                             ,
                                     1 · 2 · 3 ··· m
                             n − m
                        K =       I,
                             m +1
                             n − m − 1
                         L =          K,
                               m +2
                             n − m − 2
                        M =           L,
                               m +3
                          ··· .
        Then we let
                                m       m (m − 1)
                            m       m                   m
                 α =(m +1) −      m +            (m − 1)
                                1          1 · 2
                       m (m − 1) (m − 2)      m
                     −                  (m − 2) + ··· ,
                            1 · 2 · 3
                            m+1   m   m+1   m (m − 2)       m+1
                 β =(m +1)      −   m     +          (m − 1)
                                   1           1 · 2
                       m (m − 1) (m − 2)      m+1
                     −                  (m − 2)   + ··· ,
                            1 · 2 · 3
                            m+2   m   m+2   m (m − 1)       m+2
                 γ =(m +1)      −   m     +          (m − 1)
                                   1           1 · 2
                       m (m − 1) (m − 2)      m+2
                     −                  (m − 2)   + ··· .
                            1 · 2 · 3
        With these definitions we can write
                       m n−m
              m
                                                        x
                                       x
            ∆ y = αIω x      + βKω  m+1 n−m−1  + γLω m+2 n−m−2  + ··· .
   22   23   24   25   26   27   28   29   30   31   32