Page 26 - Foundations Of Differential Calculus
P. 26

1. On Finite Differences  9
          Then

                      4                          4 n−4
                     ∆ y = n (n − 1) (n − 2) (n − 3) ω x  + ··· .


        14. In order that we may more easily see the law by which these differences
        of powers of x are formed, let us for the sake of brevity use the following:
                             n
                        A =   ,
                             1
                             n (n − 1)
                        B =          ,
                               1 · 2
                             n (n − 1) (n − 2)
                        C =                ,
                                 1 · 2 · 3
                             n (n − 1) (n − 2) (n − 3)
                        D =                       ,
                                   1 · 2 · 3 · 4
                             n (n − 1) (n − 2) (n − 3) (n − 4)
                        E =                             ,
                                     1 · 2 · 3 · 4 · 5
                          ....


        We will use the following table for each of the differences:


               y  1000         0    0      0      0        0 ...
              ∆y  0111         1    1      1      1        1 ...

              2
             ∆ y  002614           30     62    126      254 ...
              3
             ∆ y  000636150              540   1,806   5,796 ...
              4
             ∆ y  0000242401,560               8,400  40,824 ...
              5
             ∆ y  0000         01201,800      16,800  126,000 ...
              6
             ∆ y  0000         0    0    72015,120   191,520 ...
              7
             ∆ y  0000         0    0      0   5,040 141,120 ...

        Each number in a row of the table is found by taking the sum of the
        preceding number in that row and the number directly above that preceding
        number and multiplying that sum by the exponent on ∆. For example, in
                     5
        the row for ∆ y the number 16,800 is found by taking the sum of the
        preceding 1800 and the 1560 in the preceding row to obtain 3360, which is
        multiplied by 5.
   21   22   23   24   25   26   27   28   29   30   31