Page 24 - Foundations Of Differential Calculus
P. 24

1. On Finite Differences  7
                                                     4
        Example 3. Find the differences of all orders of x .
                                     4
                   4
                           I
          Let y = x . Since y =(x + ω) , we have
                                   3    2 2     3     4
                          ∆y =4ωx +6ω x +4ω x + ω ,
        which is the first difference. Then, from what we have already found,
                                3     2 2      3      4
                           ∆4ωx =12ω x +12ω x +4ω ,
                              2 2     3      4
                          ∆6ω x =12ω x +6ω ,
                              3      4
                           ∆4ω x =4ω ,
                                4
                             ∆ω =0.
        When these are combined, we have the second difference
                                     2 2     3       4
                          ∆∆y =12ω x +24ω x +14ω .
        Furthermore, since
                                  2 2
                                           3
                                                   4
                             ∆12ω x =24ω x +12ω ,
                                   3       4
                              ∆24ω x =24ω ,
                                    4
                               ∆14ω =0,
        we obtain the third difference
                                 3       3      4
                               ∆ y =24ω x +36ω .
        Finally, we have the fourth difference
                                     4       4
                                   ∆ y =24ω ,
        and since this is constant, all differences of higher order vanish.
                                                     n
        Example 4. Find the differences of all orders of x .
                                        II
                           I
                                     n
                                                                   n
                                                    n
                   n
          Let y = x . Since y =(x + ω) ,y =(x +2ω) ,y  III  =(x +3ω) ,... ,
        the expanded powers are as follows:
                n
           y = x ,
           I    n   n  n−1   n (n − 1)  2 n−2  n (n − 1) (n − 2)  3 n−3
          y = x +    ωx    +         ω x    +                ω x
                    1          1 · 2               1 · 2 · 3
              + ··· ,
           II   n   n   n−1   n (n − 1)  2 n−2  n (n − 1) (n − 2)  3 n−3
          y = x +    2ωx    +         4ω x    +                8ω x
                    1           1 · 2                1 · 2 · 3
              + ··· ,
          III   n   n   n−1   n (n − 1)  2 n−2  n (n − 1) (n − 2)  3 n−3
         y   = x +   3ωx    +         9ω x    +                27ω x
                    1           1 · 2                1 · 2 · 3
              + ··· ,
          IV    n   n   n−1   n (n − 1)  2 n−2   n (n − 1) (n − 2)  3 n−3
         y   = x +   4ωx    +         16ω x    +                64ω x
                    1           1 · 2                 1 · 2 · 3
              + ··· .
   19   20   21   22   23   24   25   26   27   28   29