Page 181 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 181

1656_C003.fm  Page 161  Monday, May 23, 2005  5:42 PM





                       Elastic-Plastic Fracture  Mechanics                                         161


























                       FIGURE A3.5 Two circular contours around the crack tip. r 1  is in the zone dominated by the elastic singularity,
                       while r 2  is in the plastic zone where the leading term of the Hutchinson asymptotic expansion dominates.



                          Solving for the integrand in the J integral at r  leads to
                                                               2
                                                               n
                                                 w = ασεκ  n     r  ( n+  +1  s  −  2) σ ˜ e n+ 1)(  1  (A3.32a)
                                                       o o
                                                             n +1
                       and

                                          u ∂
                                                                         ′ −
                                       T i  x ∂  i  =  oo  n  r  n+  s +1 (  − 1)(  2) {sin θ  rr  u  θ  u  ˜ )  rθ  uσ [ ˜ (˜  r  +σ ˜ (˜  u − ασεκ  θ  ′ ˜ )]
                                                                         r
                                             +        − cos [ ( ns 2  +θ  ][ ˜ ˜ u  + ) 1  σ  ˜ ˜ ]}u  (A3.32b)
                                                             σ
                                                                    θθ θ
                                                              rr r
                       where ˜ u r and ˜ u θ  are dimensionless displacements, defined by
                                                     u       nn s−+(  ) 21 u  ˜  θ ()
                                                              r = αεκ
                                                      r
                                                                    r
                                                           o
                                                                                                (A3.33)
                                                     u  θ  αεκ nn s−+(  ) 21 u  ˜ θ  θ ()
                                                              r =
                                                           o
                       u  and u  can be derived from the strain-displacement relationships. Evaluating the J integral at r 2
                        r
                             q
                       gives
                                                    J    o  o  n  r = αεσκ  2 n+  s +1 (  − 1)(  2 1 I  n  (A3.34)
                                                                      +
                                                                     )
                       where I  is an integration constant, given by
                             n
                                                n
                                            +π
                                       I = ∫ −π  n +1  ˜ σ  n+1 cos θ  −  σ  rr  u [ ˜ (˜ θ  u −{sinθ  ˜ )  rθ  u ˜ (˜ r  u +σ  θ  ′ ˜ )]
                                                                         ′ −
                                             
                                                    e
                                        n
                                             
                                           +        − cos [ ( ns 2  +θ  ]( ˜ ˜  + ) 1  σ  ˜ ˜ )}u   d  (A3.35)
                                                           σ
                                                                        θ u
                                                                  θθ θ
                                                            rr r
                                                                       
   176   177   178   179   180   181   182   183   184   185   186