Page 370 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 370

1656_C007.fm  Page 350  Monday, May 23, 2005  5:54 PM





                       350                                 Fracture Mechanics: Fundamentals and Applications




                                  TABLE A7.4
                                  (Continued)


                                  (e)  Double-edge-notched tension (DENT) panel
                                                                 b 
                                                                                   P =  L     .  + 072 182  W   Bbσ Y  (plane strain)
                                                               .
                                                                                   P  L  4  B  b=  σ Y  (plane stress)
                                                          3

                                  Edge crack subject to combined bending and tension.

                                                                  P =  L  2 Bbσ Y   −   2λ  +  a   +   2λ  +  a   2  +  a   2        (plane strain)
                                                     3       W     W    b   
                                                                      2    2  
                                                            a 
                                                                     a 
                                                                  P  L  B  b=  σ  Y    −    2  +   W   + λ    2 λ  +  W   +     a         (plane stress)
                                                                           b  
                                  where
                                                                 M
                                                                                                       λ =
                                                                 PW

                                  a  The flow stress σ Y  is normally taken as the average of σ Ys  and σ Ts .
                                  b
                                   See Figure A7.1 for a definition of the dimensions for each configuration.
                       REFERENCES

                          1. E 1823-96, ‘‘Standard  Terminology Relating to Fatigue Fracture  Testing.’’  American Society for
                             Testing and Materials, Philadelphia, PA, 1996 (Reapproved 2002).
                          2. Baker, A., ‘‘A DC Potential Drop Procedure for Crack Initiation and R Curve Measurements During
                             Ductile Fracture Tests.’’ ASTM STP 856, American Society for Testing and Materials, Philadelphia, PA,
                             1985, pp. 394–410.
                          3. Schwalbe, K.-H., Hellmann, D., Heerens, J., Knaack, J., and Muller-Roos, J., ‘‘Measurement of Stable
                             Crack Growth Including Detection of Initiation of Growth Using the DC Potential Drop and the Partial
                             Unloading Methods.’’ ASTM STP 856, American Society for Testing and Materials, Philadelphia, PA,
                             1985, pp. 338–362.
                          4. E 1820-01, ‘‘Standard Test Method for Measurement of Fracture Toughness.’’ American Society for
                             Testing and Materials, Philadelphia, PA, 2001.
                          5. Dawes, M.G., ‘‘Elastic-Plastic Fracture Toughness Based on the COD and J-Contour Integral Concepts.’’
                             ASTM STP 668, American Society for Testing and Materials, Philadelphia, PA, 1979, pp. 306–333.
                          6. Anderson, T.L., McHenry, H.I., and Dawes, M.G., ‘‘Elastic-Plastic Fracture Toughness Testing with
                             Single Edge Notched Bend Specimens.’’ ASTM STP 856, American Society for Testing and Materials,
                             Philadelphia, PA, 1985, pp. 210–229.
                          7. Andrews, W.R. and Shih, C.F., ‘‘Thickness and Side-Groove Effects on J- and d-Resistance Curves
                             for A533-B Steel at 93°C.’’ ASTM STP 668, American Society for Testing and Materials, Philadelphia,
                             PA, 1979, pp. 426–450.
                          8. E 399-90, ‘‘Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials.’’ American
                             Society for Testing and Materials, Philadelphia, PA, 1990 (Reapproved 1997).
                          9. BS 5447, ‘‘Methods of  Testing for Plane Strain Fracture  Toughness (K ) of Metallic Materials.’’
                                                                                  Ic
                             British Standards Institution, London, 1974.
                         10. BS 7448: Part 1, ‘‘Fracture Mechanics Toughness Tests, Part 1, Method for Determination of K IC , Critical
                             CTOD and Critical J Values of Metallic Materials.’’ British Standards Institution, London, 1991.
   365   366   367   368   369   370   371   372   373   374   375