Page 55 - Fundamentals of Communications Systems
P. 55

Signals and Systems Review  2.7


                      EXAMPLE 2.9
                      Consider again the signal in Example 2.4 where

                                                    1             1
                                   x(t) = cos(2π f m t) =  exp[ j 2π f m t] +  exp[− j 2π f m t]
                                                    2             2
                                                        1
                                   f T = f m  x 1 = x −1 =  ,  x n = 0  for all other n  (2.20)
                                                        2




                      EXAMPLE 2.10
                      Consider again the signal in Example 2.8 where
                                      x(t) = exp( j 2π f m t)

                                      f T = f m  x 1 = 1,  x n = 0  for all other n      (2.21)





                      EXAMPLE 2.11
                      Consider again the signal in Example 2.5. The Fourier series for this example is

                                                   1     τ     2πnt
                                              x n =     exp − j      dt
                                                  T             T
                                                      0
                                                                 τ
                                                   1 exp(  − j 2πnt
                                                           T
                                                              )
                                                =
                                                  T     − j 2πn
                                                         T       0
                                                   1 1 − exp(  − j 2πnτ  )
                                                             T
                                                =                                        (2.22)
                                                  T       j 2πn
                                                          T
                                    j θ
                                   e −e − j θ
                      Using sin(θ) =      gives
                                     j 2
                                      τ        πnτ  
  sin( πnτ  )  τ     πnτ  
    nτ
                                                       T
                                 x n =  exp − j       πnτ  =    exp − j    sinc          (2.23)
                                     T         T             T         T        T
                                                      T
                      A number of things should be noted about this example
                      1. τ and the bandwidth of the waveform are inversely proportional, i.e., a smaller τ
                         produces a larger bandwidth signal.
                      2. τ and the signal power are directly proportional.
                      3. If T /τ = integer, some terms will vanish (i.e., sin(mπ) = 0).
                      4. To produce a rectangular pulse requires an infinite number of harmonics.
   50   51   52   53   54   55   56   57   58   59   60