Page 59 - Fundamentals of Communications Systems
P. 59

Signals and Systems Review  2.11

                      Theorem 2.5 Translation and Dilation If y(t) = x(at + b), then

                                                   1     f          b
                                            Y (f ) =  X     exp j 2π  f                  (2.41)
                                                   |a|   a          a
                      Theorem 2.6 Frequency Translation Multiplying any signal by a sinusoidal signal
                      results in a frequency translation of the Fourier transforms, i.e.,
                                                            1           1
                                x c (t) = x(t) cos(2π f c t) ⇒ X c (f ) =  X( f − f c ) +  X( f + f c )  (2.42)
                                                            2           2
                                                             1            1
                                x c (t) = x(t) sin(2π f c t) ⇒ X c (f ) =  X( f − f c ) −  X( f + f c )  (2.43)
                                                            j 2           j 2
                      Definition 2.6 The correlation function of a signal x(t)is
                                                        ∞

                                                              ∗
                                               V x (τ) =  x(t)x (t − τ)dt                (2.44)
                                                       −∞
                      Three important characteristics of the correlation funtion are
                                  ∞      2

                      1. V x (0) =   |x(t)| dt = E x
                                  −∞
                      2. V x (τ) = V (−τ)
                                   ∗
                                  x
                      3. |V x (τ)| < V x (0)

                      EXAMPLE 2.19
                      Example 2.1 (cont.). For the pulse
                                                        1  0 ≤ t ≤ T p

                                                x(t) =                                   (2.45)
                                                        0  elsewhere
                      the correlation function is
                                                  ⎧
                                                           |τ|
                                                  ⎨
                                                    T p  1 −     |τ|≤ T p
                                          V x (τ) =        T p                           (2.46)
                                                  ⎩
                                                    0            elsewhere
                      Definition 2.7 The energy spectrum of a signal x(t)is
                                                           ∗          2
                                              G x (f ) = X(f )X (f ) =|X(f )|            (2.47)
                        The energy spectral density is the Fourier transform of the correlation
                      function, i.e.,

                                                  G x (f ) = F{V x (τ)}                  (2.48)
                      The energy spectrum is a functional description of how the energy in the signal
                      x(t) is distributed as a function of frequency. The units on an energy spectrum
   54   55   56   57   58   59   60   61   62   63   64