Page 225 - Fundamentals of Enhanced Oil and Gas Recovery
P. 225

Waterflooding                                                                       213


                   with flow area A 5 2πrh, where h is the reservoir thickness; hence, Eq. (7.30)
                   becomes
                                           1 2 2πhkk ro =q t μ         r@P c =@r 1 P c


                                       f w 5              o                              (7.31)
                                                   1 1 k ro μ =k rw μ o
                                                           w
                      Water saturation is a function of time, t, and position, r; we can express
                                                     @S w    @S w
                                               dS w 5   dt 1     dr                      (7.32)
                                                      @t      @r
                      At the displacement front, the water saturation is constant, thus provides a bound-
                   ary condition for us.

                                          @S w     @S w        @S w    @S w dt
                                    dS w 5    dt 1    dr 5 0-      52                    (7.33)
                                           @t      @r          @t       @r dr
                      Recall that water fraction is function of water saturation, f w ðS w Þ, and partial differ-
                   ential equation result for change of fluid density governing equation:

                                              df w @S w  ð 2r e 2 2rÞπhφ @S w
                                           2         5                                   (7.34)
                                             dS w @r         q t    @t
                      Substituting Eq. (7.33) into Eq. (7.34)

                          df w    @S w dt   ð 2r e 2 2rÞπhφ @S w  df w  ð 2r e 2 2rÞπhφ
                        2       2         5                 -     dt 5             dr    (7.35)
                          dS w     @r dr         q t     @t    dS w         q t
                      Integrating Eq. (7.35) yields an equation for displacement front position, r f .


                                             2
                                            r 2 2r e r f 1  tq t  df w  5 0              (7.36)
                                             f
                                                       πhφ dS w f
                   where r f is the displacement front position in radial system; there are two solutions to
                   Eq. (7.36), which are

                                                    s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                           tq t  df w
                                                       2
                                            r f 5 r e 6  r 2                             (7.37)
                                                       e
                                                          πhφ dS w f
                      For Eq. (7.37), only one solution is correct to match the physical phenomenon.
                   Considering at the beginning of the displacement as t - 0, we have r f - 0; there-
                   fore, we can ignore the solution
                                                    s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

                                                           tq t  df w
                                                       2
                                            r f 5 r e 1  r 2                             (7.38)
                                                       e
                                                          πhφ dS w f
   220   221   222   223   224   225   226   227   228   229   230