Page 133 - Fundamentals of Magnetic Thermonuclear Reactor Design
P. 133
Chapter 5
Superconducting Magnet
Systems
Sergey A. Egorov, Igor Y. Rodin, Nikolay A. Shatil, Elena R. Zapretilina
JSC D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, Saint Petersburg, Russia
Chapter Outline
5.1 Introduction 117 5.5 Modelling of the ITER Magnet
5.2 Superconducting Magnet System 141
Systems of Electrophysical 5.5.1 International Model
Facilities 122 Coil Program 141
5.2.1 Summary 5.5.2 Toroidal Field Model Coil 143
Characteristics 5.5.3 Model Insert Coils 146
of Superconducting 5.5.4 Main Simulation
Magnets 122 and Testing Results 150
5.2.2 ITER Magnets 123 Appendix A.5.1 Thermal–
5.3 Physical and Mechanical Hydraulic Simulations of ITER
Properties of Superconductors 127 Superconducting Magnets
5.3.1 Flux Pinning 127 at Normal and Off-Normal
5.3.2 Critical Characteristics 128 Operation 155
5.3.3 Intrinsic Stabilisation 129 A.5.1.1 Venecia Basic Models
5.4 Winding Superconductors 131 and Modelling Technique 157
5.4.1 Normal Phase Effect 131 A.5.1.2 Validation of Vincenta/
5.4.2 Forced-Flow Cooled Venecia Models for
Superconducting Thermal–Hydraulic Analysis
Cables 132 of SC Magnets and Their
5.4.3 Basic Superconducting Cryogenic Circuits 159
Strands 136 A.5.1.3 Thermal–Hydraulic
5.4.4 Superconducting Coil Models of ITER Magnets 165
Cable Manufacturing A.5.1.4 Mitigation of Pulsed
Processes 138 Heat Loads 170
References 175
5.1 INTRODUCTION
Superconductivity is a stationary state of a material characterised by the follow-
ing: (1) zero electrical resistance and internal electric field and (2) applied mag-
netic fields do not penetrate inside the superconductor (SC)—magnetic field
Fundamentals of Magnetic Thermonuclear Reactor Design. http://dx.doi.org/10.1016/B978-0-08-102470-6.00005-6
Copyright © 2018 Elsevier Ltd. All rights reserved. 117