Page 50 - Fundamentals of Ocean Renewable Energy Generating Electricity From The Sea
P. 50

Review of Hydrodynamic Theory Chapter | 2 41


                Similar to the continuity equation, we can integrate the momentum equations
             in the x and y directions over depth. Integrating the momentum equation in the
             x direction (Eq. 2.28) produces
                      ∂u           ∂u    ∂u    ∂u             ∂η
                      η         η  
                         η
                         dz +     u   + v   + w    dz =−     g   dz + ···
                    −d ∂t     −d   ∂x    ∂y    ∂z          −d ∂x
                       1     η  
  ∂τ xx  ∂τ yx  ∂τ zx
                     +            +     +       dz                     (2.58)
                       ρ  −d   ∂x    ∂y    ∂z
                Again, we can evaluate the integrals using Leibnitz’s law, which leads to the
             cancellation of several terms. Therefore, for the local acceleration term, we may
             write
                            ∂u     ∂              ∂η        ∂(−d)
                           η            η
                              dz =       udz − u(η)  + u(−d)           (2.59)
                         −d ∂t     ∂t  −h         ∂t          ∂t
                Referring to Eq. (2.25), the convective acceleration term in the momentum
             equation can be written as
                             ∂u    ∂u    ∂u   ∂u 2  ∂uv   ∂uw
                            u   + v  + w    =     +     +              (2.60)
                             ∂x    ∂y    ∂z    ∂x    ∂y    ∂z
             Application of Leibnitz’s rule for the convective term leads to
                   η  2          η
                    ∂u      ∂      2     2  ∂η    2    ∂(−d)
                       dz =       u dz − u (η)  + u (−d)               (2.61)
                 −d ∂x      ∂x  −d          ∂x           ∂x
                    ∂uv     ∂                   ∂η             ∂(−d)
                   η             η
                       dz =      (uv)dz − u(η)v(η)  + u(−d)v(−d)       (2.62)
                 −d ∂y      ∂y  −d              ∂y               ∂y
                    ∂uv
                   η
                       dz = u(η)w(η) − u(−d)w(−d)                      (2.63)
                 −d ∂x
                If we add the above equations (2.61–2.63), and use Eqs 2.47 and 2.48,
             several terms will be cancelled out. Integrating the hydrostatic pressure term
             generates
                                η  
  ∂η     ∂η     η
                                  g    dz = g      dz
                              −d   ∂x        ∂x  −d
                                             ∂η          ∂η
                                         = g   (d + η) = g  h          (2.64)
                                             ∂x          ∂x
                Also, application of Leibnitz’s rule to the shear-stress terms results in
                      η              η
                       ∂τ xx    ∂                ∂η         ∂(−d)
                           dz =      τ xx dz − τ xx (η)  + τ xx (−d)   (2.65)
                    −d ∂x      ∂x  −d            ∂x           ∂x
                      η              η
                       ∂τ yx    ∂                ∂η         ∂(−d)
                           dz =      τ yx dz − τ yx (η)  + τ yx (−d)   (2.66)
                    −d ∂y      ∂y  −d            ∂y           ∂y
                      η              η
                       ∂τ zx    ∂                ∂η         ∂(−d)
                           dz =      τ zx dz − τ zx (η)  + τ zx (−d)   (2.67)
                    −d ∂z      ∂z  −d            ∂z           ∂z
   45   46   47   48   49   50   51   52   53   54   55