Page 201 - Fundamentals of Probability and Statistics for Engineers
P. 201

184                    Fundamentals of Probability and Statistics for Engineers

                          Table 6.3  Summary of discrete distributions
           Distribution  Probability mass function Parameters  Mean Variance
                          n

                             k
           Binomial         p (1   p) n k ,  n, p         np    np(1   p)
                          k
                         k ˆ 0, 1, .. . , n
                                     n
                                   .                            mn 1 (n   n 1 )(n   m)
                          n 1  n   n 1                    mn 1
           Hypergeometric              ,     n, n 1 , m
                                                                    2
                           k  m   k  m                     n       n (n   1)
                         k ˆ 0, 1, .. . , min (n 1 , m)
                                                          1     1   p
           Geometric     (1   p) k 1 p,      p                    2
                         k ˆ 1, 2, .. .                   p      p

                          k   1                           r     r(1   p)
                                r
           Negative binomial    p (1   p) k r ,  r, p              2
            (Pascal)       r   1                          p       p
                         k ˆ r, r ‡ 1, .. .
                             n!
                                          k r
           Multinomial            p p      p ,  n, p i , i ˆ 1,      , rnp i  np i (1   p i )
                                   k 1 k 2
                                     2
                                   1
                                          r
                         k 1 !k 2 !      k r !
                         k 1 , .. . , k r ˆ 0, 1, 2, ... ,
                         P r     P r
                           k i ˆ n,  p i ˆ 1,
                         iˆ1     iˆ1
                         i ˆ 1, .. . , r
                            k   t
                         ( t) e
           Poisson              , k ˆ 0, 1, 2, .. .   t    t     t
                            k!
           FURTHER READING

           Clark, R.D., 1946, ‘‘An Application of the Poisson Distribution’’, J. Inst. Actuaries 72 48–52.
           Solloway, C.B., 1993, ‘‘A Simplified Statistical Model for Missile Launching: III’’, TM
            312–287, Jet Propulsion Laboratory, Pasadena, CA.
            Binomial and Poisson distributions are widely tabulated in the literature. Additional
           references in which these tables can be found are:
           Arkin,  H.,  and  Colton,  R.  1963,  Tables for Statisticians,  2nd  eds,  Barnes and  Noble,
            New York.
           Beyer, W.H., 1966, Handbook of Tables for Probability and Statistics, Chemical Rubber
            Co., Cleveland, OH.
           Grant, E.C., 1964, Statistical Quality Control, 3rd eds, McGraw-Hill, New York.
           Haight,  F.A.,  1967,  Handbook of the Poisson Distribution,  John  Wiley  &  Sons  Inc.,
            New York.
           Hald, A., 1952, Statistical Tables and Formulas, John Wiley & Sons Inc., New York.
           Molina, E.C., 1949, Poisson’s Exponential Binomial Limit, Von Nostrand, New York.
           National Bureau  of Standards, 1949, Tables of the Binomial Probability Distributions:
            Applied Mathematics Series 6, US Government Printing Office, Washington, DC.
           Owen, D., 1962, Handbook of Statistical Tables, Addison-Wesley, Reading, MA.
           Pearson, E.S., and Harley, H.O. (eds), 1954, Biometrika Tables for Statisticians, Volume 1,
            Cambridge University Press, Cambridge, England.







                                                                            TLFeBOOK
   196   197   198   199   200   201   202   203   204   205   206