Page 200 - Fundamentals of Reservoir Engineering
P. 200

STABILIZED INFLOW EQUATIONS                                138

                     equation in these terms requires the determination of the volume averaged pressure
                     within the radial cell as

                               e r
                                 pdV

                           p =  w r                                                                  (6.9)
                                e r
                                  dV
                               w r

                     and since dV = 2πrhφdr, equ. (6.9) can be expressed as

                               e r
                                 p2 rh dr
                                   π
                                      φ
                               w r
                           p =   2   2
                              π (r −  r )hφ
                                     w
                                 e
                     or
                                  2    e r
                           p =      2   prdr
                                 2
                               (r − r )  w r
                                e
                                    w
                                2
                                                     2
                                        2
                                    2
                                                2
                                             2
                                           −
                     and since r −  r = r (1 r /r ) r ,then
                                                   ≈
                                                     e
                                             w
                                                e
                                        e
                                    w
                                e
                               2  e r
                           p =  2   prdr                                                            (6.10)
                              r e  w r
                     The pressure in the integrand of equ. (6.10) is obtained from equ. (6.6) which is a
                     general expression for p as a function of r. Substituting the latter in equ. (6.10) gives
                                                         2
                                     2   qµ   e r     r  r
                           pp     =    .        r ln  −   2   dr                                    (6.11)

                             −
                               wf
                                     r e 2  2kh  w r     r w  2r e
                                         π
                     The first term in the integrand is evaluated using the method of integration by parts, i.e.
                           e r  r       r    2  r    e r  e r  1 r  2
                             rln  dr =    ln      −       dr
                           w r  r w       2  w r   w r    w r  r 2
                                        r    2  r    e r  r    2    e r
                                     =     ln     −
                                           2  w r   w r         4   w r
                                        r 2   r   r 2
                                     ≈  e  ln  e  −  e
                                        2     r w  4
                     while the integration of the latter term in equ. (6.11) gives


                           e r  r 3     r   r e  r 2
                                       4
                               2  dr =     2    ≈  8
                                              e
                           w r  2r e    8r e  w r
   195   196   197   198   199   200   201   202   203   204   205