Page 213 - Fundamentals of Reservoir Engineering
P. 213

OILWELL TESTING                                    151

                     Equation (5.20) can be expressed with respect to this new variable as

                           1   d     r  dp  ∂  s   ∂ s  φµ c  dp  ∂ s
                           r  ds        ds  r ∂     r ∂  =  k  ds  t ∂


                     and using equs. (7.2) and (7.3), this becomes


                           1 φµ   cr   d      φµ cr 2  dp    =−     φ µ cr   2  dp
                           r   2k t   ds        2k t  ds             2k t       ds


                     which can be simplified as

                            d     s  dp      s  dp
                           ds        ds      =−  ds


                     or
                           dp          d     dp          dp
                                +  s              = − s
                           ds         ds      ds         ds

                     This is an ordinary differential equation which can be solved by letting

                           dp     p′
                           ds  =

                     Then

                                     dp′
                           p′ +   s       = −  sp′
                                     ds                                                              (7.4)
                                      +
                           dp′      (s1  )
                                =−          ds
                            p′        s
                     Integrating equ. (7.4) gives


                           ln p′ =−    ln s −   s +  C 1

                           or

                                     e − s
                           p′ =  C 2  s                                                              (7.5)


                     where C 1 and C 2 are constants of integration and C 2 can be evaluated using the line
                     source boundary condition

                                    ∂ p     qµ         dp   ∂ s        dp
                            lim  r      =          = r          =  2s
                                            π
                           r →  0    r ∂   2 kh        ds     r ∂      ds
                     therefore,
   208   209   210   211   212   213   214   215   216   217   218