Page 111 - gas transport in porous media
P. 111

104
                           For the special case of a homogeneous porous medium, Eq. (6.170) can be
                           expressed as                                                Whitaker
                                                    	      γ
                                               a v K eq  ∂ c Aγ      γ       γ
                                       ε γ  1 +              + ε γ  v γ   ·∇ c Aγ       (6.175)
                                                ε γ     ∂t
                                                             γ
                                                     K eq ∂ c Aγ                γ
                                                                      ∗
                                          + ε γ d γ ·∇           = ε γ D : ∇∇ c Aγ
                                                                      γ
                                                         ∂t
                           provided one is willing to ignore the variations in the total dispersion tensor that
                           result from variations in the velocity field. For a homogeneous porous medium and a
                           constant velocity, Eq. (6.175) is exact. If the adsorption isotherm is nonlinear, K eq is
                                          γ
                           a function of  c Aγ   ; however, for linear adsorption K eq is a constant and Eq. (6.175)
                           simplifies to
                                                    	      γ
                                               a v K eq  ∂ c Aγ      γ       γ
                                       ε γ  1 +              + ε γ  v γ   ·∇ c Aγ       (6.176)
                                                ε γ     ∂t
                                                             γ
                                                        ∂ c Aγ                  γ
                                                                      ∗
                                          + ε γ d γ K eq ·∇      = ε γ D : ∇∇ c Aγ
                                                                      γ
                                                          ∂t
                           For chromatographic processes, this result can be simplified following the original
                           analysis of Golay (1958). For pulsed systems, we identify the pulse velocity by u p
                           and express the time derivative of the concentration as
                                                  γ         γ
                                             ∂ c Aγ    d c Aγ              γ
                                                    =           − u p ·∇ c Aγ           (6.177)
                                               ∂t        dt
                                                              u p
                             Here the subscript u p is used to indicate the time derivative as determined by an
                           observer moving at the velocity u p . When the following restriction is valid
                                                        γ          γ
                                                   ∂ c Aγ    d c Aγ
                                                                                        (6.178)
                                                     ∂t         dt
                                                                     u p
                           the mixed derivative term in Eq. (6.176) can be expressed as
                                                     γ
                                                ∂ c Aγ                        γ
                                    ε γ d γ K eq ·∇      =−ε γ K eq d γ u p : ∇∇ c Aγ    (6.179)
                                                  ∂t
                           Use of this result in Eq. (6.175) leads to a chromatographic equation in the form
                                                  γ           γ
                                             ∂ c Aγ         v γ            γ
                                                                     ·∇ c Aγ            (6.180)
                                                    +
                                               ∂t           −1
                                                       1 + ε γ a v K eq

                                                    ∗
                                                   D + K eq d γ u p       γ
                                                    γ
                                               =                 : ∇∇ c Aγ
                                                        −1
                                                   1 + ε γ a v K eq
   106   107   108   109   110   111   112   113   114   115   116