Page 104 - Geometric Modeling and Algebraic Geometry
P. 104

102    T.-H. Lˆ e and A. Galligo
                           The proof is simple but tedious.
                              Therefore, by choosing 4 tangent planes as (X =0), (Y =0), (Z =0), (T =
                           0) and by a similar demonstration as in the generic complex case, we obtain the
                           parametric complex representation of the surface:
                                              ⎧
                                              ⎪ X = tu 2
                                              ⎪
                                              ⎨           iθ      iθ
                                                Y =(t − e s)(u − e  v) 2
                                              ⎪ Z =(t − e −iθ s)(u − e −iθ   v) 2
                                              ⎪
                                              ⎩
                                                T = sv  2
                           We write the surface equations in the affine chart s = v = T =1 and take we have
                           that:
                                        ⎧
                                        ⎨ x = tu 2
                                          y =(t − cos θ − i sin θ)(u − cos θ − i sin θ )

                                                                                2
                                          z =(t − cos θ + i sin θ)(u − cos θ + i sin θ )
                                        ⎩

                                                                                2

                           By dividing y and z by sin θ sin θ and denoting a = cotan θ, b = cotan θ,we
                                                      2
                           obtain the following system:
                                       ⎧
                                       ⎪ x = tu 2
                                       ⎪
                                       ⎪      y          t           u
                                       ⎨
                                                    =(     − a − i)(    − b − i) 2
                                          sin θ sin θ     sin θ    sin θ
                                                2
                                       ⎪      z          t           u
                                       ⎪
                                       ⎪            =(     − a + i)(    − b + i) 2
                                       ⎩
                                          sin θ sin θ     sin θ    sin θ
                                                2
                                                        t             u
                           By changing the parameters t =  − a, u =      − b and by transformation


                                                       sin θ        sin θ
                                                      1


                           of coordinates (x ,y ,z )=       (x, y, z) we obtain the surface equations as

                                                  sin θ sin θ
                                                         2
                           follows:
                                                  ⎧
                                                  ⎨ x =(t + a)(u + b) 2



                                                    y =(t − i)(u − i) 2



                                                  ⎩
                                                    z =(t + i)(u + i) 2

                                                            y + z     y − z

                           Finally, we transform (x ,y ,z )=(x ,  ,      ). Therefore we proved the




                                                               2    −2i
                           following proposition:
                           Proposition 10. A normal form for the parametric equations of a surface of type II
                           is as follows:
                                     ⎧
                                     ⎨ x =(t + a)(u + b) 2
                                (S):   y = tu − t − 2u        with a = cotan θ, b = cotan θ
                                             2
                                       z =2tu + u − 1
                                     ⎩
                                                 2
                              A surface of type II has two real pinch points corresponding to (t 1 = −b, u 1 =
                                                                                .
                           −b), (t 2 = ∞,u 2 = ∞) and has two real torsal lines L u 1
                                                                          and L u 2
   99   100   101   102   103   104   105   106   107   108   109