Page 209 - Geometric Modeling and Algebraic Geometry
P. 209

212    C. Liang et al.
                           11.4.3 Silhouette curves of implicit surfaces

                           The following samples are taken from http://www-sop.inria.fr/galaad/surfaces/.We
                           intersect the surface with its polar variety in one direction (here the x direction). In
                           other words, we intersect the surface with the surface defined by one of its first order
                           derivative (here ∂ x f), to extract its silhouette. The surfaces that we used are called
                           respectively Tetrahedral, Q3, Q1 and Barth Sextic (see Fig.11.3):
                           5) f(x)= x +2x y +2x z +y +2y z +z +8xyz−10x −10y −10z +25
                                           2 2
                                                                                         2
                                      4
                                                                                    2
                                                                              2
                                                 2 2
                                                       4
                                                            2 2
                                                                  4
                              g(x)=4x +4xy +4xz +8yz − 20x
                                             2
                                                   2
                                       3
                              time: 510 msec
                           6) f(x)=5.229914547374508y z +3.597883597883598x y + y + z − x −
                                                                             2 2
                                                                                           4
                                                      2 2
                                                                                       4
                                                                                   4
                              19.49816368932737xyz +5.229914547374508x − 7.43880040039534y 2
                                                                      2
                              g(x)= −3.59788359788359z +7.43880040039534z x −110.45982909yz +
                                                                         2 2
                                                                                            2
                                                      2
                              7.195767196x y +4y − 19.49816368932737xz − 14.87760080y
                                                3
                                          2
                              time: 330 msec
                           7) f(x)= x +y +z −4x −4y z −4y −4z x −4z −4x y +20.7846xyz+1
                                         4
                                                                        2
                                                      2 2
                                                  2
                                             4
                                      4
                                                                  2 2
                                                             2
                                                                             2 2
                              g(x)=4x − 8x − 8xz − 8xy +20.7846yz
                                                        2
                                       3
                                                  2
                              time: 730 msec
                           8) f(x)=67.77708776x y z − 27.41640789x y − 27.41640789x z
                                                                                    2 4
                                                2 2 2
                                                                   4 2
                              +10.47213596x z −27.41640789y z +10.47213596y x +10.47213596y z
                                                           4 2
                                                                           4 2
                                           4 2
                                                                                           2 4
                              − 4.236067978x − 8.472135956x y − 8.472135956x z +8.472135956x 2
                                                                            2 2
                                                           2 2
                                            4
                              − 4.236067978y − 8.472135956y z +8.472135956y − 4.236067978z 4
                                            4
                                                                           2
                                                           2 2
                              +8.472135956z − 4.236067978
                                            2
                              g(x) = 135.5541755xy z − 109.6656316x y − 54.83281578xz  4
                                                 2 2
                                                                  3 2
                              +41.88854384x z +20.94427192y x − 16.94427191x − 16.94427191xy  2
                                                                             3
                                            3 2
                                                             4
                              − 16.94427191xz +16.94427191x
                                             2
                              time: 4010 msec
                              (a) Example 5    (b) Example 6    (c) Example 7    (d) Example 8
                                Fig. 11.3. Topological descriptions of the silhouette curves of algebraic surfaces.
   204   205   206   207   208   209   210   211   212   213   214